The cause of focal-segmental glomerulosclerosis as a consequence of physiological aging, which is believed to be inexorable, is unknown. This study investigated whether inhibition of endothelin-1, a growth-promoting peptide contributing to renal injury in hypertension and diabetes, affects established glomerulosclerosis and proteinuria in the aged kidney. We also determined the role of endothelin receptors for podocyte injury in vivo and in vitro. Aged Wistar rats, a model of spontaneous age-dependent glomerulosclerosis, were treated with the orally active endothelin subtype A (ET(A)) receptor antagonist darusentan, and evaluation of renal histology, renal function studies, and expression analyses were performed. In vitro experiments using puromycin aminonucleoside to induce podocyte injury investigated the role of ET(A) receptor signaling for apoptosis, cytoskeletal injury, and DNA synthesis. In aged Wistar rats, established glomerulosclerosis and proteinuria were reduced by >50% after 4 weeks of darusentan treatment, whereas blood pressure, glomerular filtration rate, or tubulo-interstitial renal injury remained unaffected. Improvement of structural injury in glomeruli and podocytes was accompanied by a reduction of the expression of matrix metalloproteinase-9 and p21Cip1/WAF1. In vitro experiments blocking ET(A) receptors using specific antagonists or RNA interference prevented apoptosis and structural damage to podocytes induced by puromycin aminonucleoside. In conclusion, these results support the hypothesis that endogenous endothelin contributes to glomerulosclerosis and proteinuria in the aging kidney. The results further suggest that age-dependent glomerulosclerosis is not merely a "degenerative" but a reversible process locally confined to the glomerulus involving recovery of podocytes from previous injury.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.HYP.0000149249.09147.b4DOI Listing

Publication Analysis

Top Keywords

glomerulosclerosis proteinuria
16
proteinuria aging
8
aging kidney
8
renal injury
8
established glomerulosclerosis
8
podocyte injury
8
aged wistar
8
wistar rats
8
age-dependent glomerulosclerosis
8
eta receptor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!