Analysis of sequence variation among members of a single species offers a potential approach to identify functional DNA elements responsible for biological features unique to that species. Due to its high rate of allelic polymorphism and ease of genetic manipulability, we chose the sea squirt, Ciona intestinalis, to explore intraspecies sequence comparisons for genome annotation. A large number of C. intestinalis specimens were collected from four continents, and a set of genomic intervals were amplified, resequenced, and analyzed to determine the mutation rates at each nucleotide in the sequence. We found that regions with low mutation rates efficiently demarcated functionally constrained sequences: these include a set of noncoding elements, which we showed in C. intestinalis transgenic assays to act as tissue-specific enhancers, as well as the location of coding sequences. This illustrates that comparisons of multiple members of a species can be used for genome annotation, suggesting a path for the annotation of the sequenced genomes of organisms occupying uncharacterized phylogenetic branches of the animal kingdom. It also raises the possibility that the resequencing of a large number of Homo sapiens individuals might be used to annotate the human genome and identify sequences defining traits unique to our species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC534664PMC
http://dx.doi.org/10.1101/gr.3199704DOI Listing

Publication Analysis

Top Keywords

intraspecies sequence
8
sequence comparisons
8
unique species
8
genome annotation
8
large number
8
mutation rates
8
comparisons annotating
4
annotating genomes
4
genomes analysis
4
analysis sequence
4

Similar Publications

Evaluation of nationwide analysis surveillance for methicillin-resistant within Genomic Medicine Sweden.

Microb Genom

January 2025

Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, rebro University, rebro, Sweden.

National epidemiological investigations of microbial infections greatly benefit from the increased information gained by whole-genome sequencing (WGS) in combination with standardized approaches for data sharing and analysis. To evaluate the quality and accuracy of WGS data generated by different laboratories but analysed by joint pipelines to reach a national surveillance approach. A national methicillin-resistant (MRSA) collection of 20 strains was distributed to nine participating laboratories that performed in-house procedures for WGS.

View Article and Find Full Text PDF

Background: Polyphenol oxidases () form a multigene family that is widely distributed in plants, animals, and insects. To date, have been identified in plants such as L. and L.

View Article and Find Full Text PDF

The intraspecies and interspecies Comparative Genomic Hybridization (CGH) between the closely related Cebidae species, capuchin monkeys (, ), and the tamarins () was performed to analyze their genomes. In particular, this approach determines balanced and unbalanced repetitive DNA sequence distribution and reveals dynamics during evolution. Capuchin monkeys are considered the most ancestral group with conserved syntenies compared to the hypothetical ancestral New World monkeys' karyotype.

View Article and Find Full Text PDF

Trichoderma spp. are among the most studied biocontrol agents. While extensive work has been done to understand Trichoderma antagonistic mechanisms, additional research is needed to fully understand how Trichoderma spp.

View Article and Find Full Text PDF

QTL mapping and candidate gene analysis of element accumulation in rice grains via genome-wide association study and population genetic analysis.

BMC Plant Biol

January 2025

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.

Background: Toxic heavy metal elements in soils are major global environmental issues and easily migrate to crop grains to cause severe problems in human health, whereas moderately essential elements such as selenium are beneficial for human health. The accumulation of heavy metals and essential elements in rice grains and their genetic mechanisms are still poorly understood.

Results: We conducted genetic dissection of four toxic heavy metal elements (lead, cadmium, mercury, and chromium), one quasi metallic element (arsenic), and one essential element (selenium) in grains of 290 Xian and 308 Geng rice accessions through a genome-wide association study (GWAS) based on three statistical models and assays of element concentrations from three environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!