AI Article Synopsis

  • High bone mass diseases arise from mutations in the Wnt pathway and loss of SOST, leading to increased BMP signaling.
  • In C3H10T1/2 cells, both Wnt-3A and BMP-6 promote osteoblast differentiation, but certain BMP antagonists can inhibit this effect.
  • The study suggests that while sclerostin and BMP antagonists do not directly block Wnt signaling, they inhibit osteoblast differentiation by affecting BMP production induced by Wnt-3A.

Article Abstract

High bone mass diseases are caused both by activating mutations in the Wnt pathway and by loss of SOST, a bone morphogenetic protein (BMP) antagonist, leading to the activation of BMP signaling. Given the phenotypic similarity between mutations that activate these signaling pathways, it seems likely that BMPs and Wnts operate in parallel or represent components of the same pathway, modulating osteoblast differentiation. In this study, we show that in C3H10T1/2 cells, Wnt-3A and BMP-6 proteins were inducers of osteoblast differentiation, as measured by alkaline phosphatase (ALP) induction. Surprisingly, sclerostin, noggin, and human BMP receptor 1A (BMPR1A)-FC fusion proteins blocked Wnt-3A-induced ALP as well as BMP-6-induced ALP activity. Dkk-1, a Wnt inhibitor, blocked Wnt-induced ALP activity but not BMP-induced ALP activity. Early Wnt-3A signaling as measured by beta-catenin accumulation was not affected by the BMP antagonists but was blocked by Dkk-1. Wnt-3A induced the appearance of BMP-4 mRNA 12 h prior to that of ALP in C3H10T1/2 cells. We propose that sclerostin and other BMP antagonists do not block Wnt signaling directly. Sclerostin blocks Wnt-induced ALP activity by blocking the activity of BMP proteins produced by Wnt treatment. The expression of BMP proteins in this autocrine loop is essential for Wnt-3A-induced osteoblast differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M400524200DOI Listing

Publication Analysis

Top Keywords

alp activity
16
osteoblast differentiation
12
bone morphogenetic
8
c3h10t1/2 cells
8
wnt-induced alp
8
bmp antagonists
8
bmp proteins
8
bmp
7
alp
7
proteins
5

Similar Publications

Human periodontal ligament stem cells (hPDLSCs) play a critical role in the regeneration of periodontal tissue. Forkhead box protein A1 (FOXA1) has been implicated in the inflammatory mechanisms of various diseases. However, the role of FOXA1 in periodontal inflammation and its effect on the osteogenic differentiation of hPDLSCs remains unclear.

View Article and Find Full Text PDF

Introduction The COVID-19 pandemic originated in Wuhan, China, and swiftly spread across all continents. The respiratory system is the most affected in people who acquire sickness as a result of SARS-CoV-2. However, the virus can also affect other systems.

View Article and Find Full Text PDF

Introduction: Two-dimensional (2D) MXene, recognized for its outstanding physical and chemical properties,has gained attention as a promising material in the biomedical field. However, its potential in tissue engineering applications remains underexplored. This study focuses on synthesizing SF-MXene composite electrospun fibers and evaluating their suitability for biomedical applications.

View Article and Find Full Text PDF

This study investigates the mechanism of PHF20 in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). BMSCs from Balb/c mouse were cultured and identified through osteogenesis, adipogenesis, and flow cytometry. After osteogenic induction, the levels of OPN and OCN in BMSCs were detected by RT-qPCR.

View Article and Find Full Text PDF

BefA protein alleviates progression of non-alcoholic fatty liver disease by modulating the AMPK signaling pathway through the gut-liver axis.

Int J Biol Macromol

January 2025

School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China; Department National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China. Electronic address:

Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver diseases worldwide, necessitating urgent novel oral treatments. In this study, β-cell expansion factor A (BefA) was evaluated in a murine NAFLD model induced by high-fat diet (HFD). Our results revealed that BefA significantly reduced body weight (36.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!