Mesic forests in the North American Pacific Northwest occur in two disjunct areas: along the coastal and Cascade ranges of Oregon, Washington, and British Columbia as well as the Northern Rocky Mountains of Idaho, Montana, and British Columbia. Over 150 species or species complexes have disjunct populations in each area, and a priori hypotheses based on phytogeography and geology potentially explain the disjunction via either dispersal or vicariance. Here, we test these hypotheses in the disjunct salamander complex Plethodon vandykei and P. idahoensisby collecting genetic data (669 bp of Cyt b) from 262 individuals. Maximum likelihood analysis indicated reciprocal monophyly of these species, supporting the ancient vicariance hypothesis, whereas parametric bootstrap and Bayesian hypothesis testing allow rejection of the dispersal hypothesis. The coalescent estimate of the time since population divergence (estimated using MDIV) is 3.75 x 106 years, and the 95%credibility interval of this value overlaps with the geological estimate of vicariance, but not the hypothesized dispersal. These results are congruent with the pattern seen in other mesic forest amphibian lineages and suggest disjunction in amphibians may be a concerted response to a geological/climatological event. WithinP. idahoensis, we tested the corollary hypothesis of an inland Pleistocene refugium in the Clearwater drainage with nested clade analysis and coalescent estimates of population growth rate (g). Both analyses support post-Pleistocene expansion from the Clearwater refugium. We corroborated this result by calculating Tajima's Dand mismatch distribution within each drainage, showing strong evidence for recent population expansion within most drainages. This work demonstrates the utility of statistical phylogeography and contributes two novel analytical tools: tests of stationarity with respect to topology in the Bayesian estimation, and the use of coalescent simulations to test the significance of the population growth-rate parameter.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10635150490522296DOI Listing

Publication Analysis

Top Keywords

plethodon vandykei
8
british columbia
8
testing nested
4
nested phylogenetic
4
phylogenetic phylogeographic
4
phylogeographic hypotheses
4
hypotheses plethodon
4
species
4
vandykei species
4
species group
4

Similar Publications

Allopatry is commonly used to predict boundaries in species delimitation investigations under the assumption that currently allopatric distributions are indicative of reproductive isolation; however, species ranges are known to change over time. Incorporating a temporal perspective of geographic distributions should improve species delimitation; to explore this, we investigate three species of western Plethodon salamanders that have shifted their ranges since the end of the Pleistocene. We generate species distribution models (SDM) of the current range, hindcast these models onto a climatic model 21 Ka, and use three molecular approaches to delimit species in an integrated fashion.

View Article and Find Full Text PDF

Codistributed species may display either congruent phylogeographic patterns, indicating similar responses to a series of shared climatic and geologic events, or discordant patterns, indicating independent responses. This study compares the phylogeographic patterns of two similarly distributed salamander species within the Pacific Northwest of the United States: Cope's giant salamander (Dicamptodon copei) and Van Dyke's salamander (Plethodon vandykei). Previous studies of P.

View Article and Find Full Text PDF

We examine the evolution of mesic forest ecosystems in the Pacific Northwest of North America using a statistical phylogeography approach in four animal and two plant lineages. Three a priori hypotheses, which explain the disjunction in the mesic forest ecosystem with either recent dispersal or ancient vicariance, are tested with phylogenetic and coalescent methods. We find strong support in three amphibian lineages (Ascaphus spp.

View Article and Find Full Text PDF

Mesic forests in the North American Pacific Northwest occur in two disjunct areas: along the coastal and Cascade ranges of Oregon, Washington, and British Columbia as well as the Northern Rocky Mountains of Idaho, Montana, and British Columbia. Over 150 species or species complexes have disjunct populations in each area, and a priori hypotheses based on phytogeography and geology potentially explain the disjunction via either dispersal or vicariance. Here, we test these hypotheses in the disjunct salamander complex Plethodon vandykei and P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!