Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rapid uptake of intravenously injected liposomes by the mononuclear phagocyte system has limited their use as drug delivery vehicles. Recently, various long-circulating liposomes have been prepared by incorporating glycolipids or other amphiphilic molecules into the lipid bilayer of conventional liposomes. The purpose of the present study was to design a new class of biodegradable membrane modifiers that would increase the half-life of liposomes in vivo. Using solid-phase peptide synthesis, synthesized were 30-residue random libraries consisting of a random sequence of glycine, beta-alanine and gamma-aminobutyric acid. The libraries were coupled to stearic acid (SA) or phosphatidylethanolamine (PE). The resulting amphiphilic conjugates were mixed with egg phosphatidylcholine (PC) and cholesterol (Chol) in a 6:47:47 ratio, and unilamellar liposomes were prepared. For comparison, plain PC/Chol (50:50) liposomes, as well as liposomes containing polyethylene glycol (PEG)-SA/PC/Chol (6:47:47) and PEG-PE/PC/Chol (6:47:47) were also prepared. Calcein was entrapped in the liposomes, which were given intravenously to rats at a dose of 9.2 mumol lipid/kg, and the amount of intact liposomes present in serum was followed with time. While the conventional liposomes had a short elimination half-life (28 min), the liposomes modified with library-PE had a much longer half-life (170 min), while library-SA provided no improvement of the liposome pharmacokinetics. PEG-PE greatly improved the half-life of the liposomes (400 min) while PEG-SA only provided a marginal improvement. All liposome preparations were cleared in a biphasic fashion. In conclusion, a novel biodegradable lipopeptide conjugate was designed that endows liposomes with a prolonged circulation time in vivo. The pharmacokinetic profile of these modified liposomes was drastically improved over that of conventional liposomes. Since the library is prepared by solid-phase synthesis, length and/or composition could easily be modified in order to modulate the clearance profile of the liposomes. Tailoring of the pharmacokinetic profile of the liposomes depending on their intended application may allow for a greater flexibility of use than PEG-PE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10611860412331285279 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!