AI Article Synopsis

  • Human cystathionine beta-synthase (CBS) is a specialized enzyme that relies on both pyridoxal-5'-phosphate and heme for its activity, but the specific role of heme has not been fully understood.
  • The study found that the core structure of CBS is responsible for its activity's pH dependence, revealing that changes in pH do not significantly alter the heme's coordination sphere across a pH range of 6 to 9.
  • Instead, pH influences the balance between ferric (Fe(III)) and ferrous (Fe(II)) states of the heme, suggesting that the heme's function relates more to regulating CBS activity via its iron oxidation state influenced by pH

Article Abstract

Human cystathionine beta-synthase (CBS) is a unique pyridoxal-5'-phosphate-dependent enzyme in which heme is also present as a cofactor. Because the function of heme in this enzyme has yet to be elucidated, the study presented herein investigated possible relationships between the chemistry of the heme and the strong pH dependence of CBS activity. This study revealed, via study of a truncation variant, that the catalytic core of the enzyme governs the pH dependence of the activity. The heme moiety was found to play no discernible role in regulating CBS enzyme activity by sensing changes in pH, because the coordination sphere of the heme is not altered by changes in pH over a range of pH 6-9. Instead, pH was found to control the equilibrium amount of ferric and ferrous heme present after reaction of CBS with one-electron reducing agents. A variety of spectroscopic techniques, including resonance Raman, magnetic circular dichroism, and electron paramagnetic resonance, demonstrated that at pH 9 Fe(II) CBS is dominant while at pH 6 Fe(III) CBS is favored. At low pH, Fe(II) CBS forms transiently but reoxidizes by an apparent proton-gated electron-transfer mechanism. Regulation of CBS activity by the iron redox state has been proposed as the role of the heme moiety in this enzyme. Given that the redox behavior of the CBS heme appears to be controlled by pH, interplay of pH and oxidation state effects must occur if CBS activity is redox regulated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi0488496DOI Listing

Publication Analysis

Top Keywords

cbs activity
12
cbs
10
heme
9
redox behavior
8
cystathionine beta-synthase
8
heme moiety
8
feii cbs
8
enzyme
5
activity
5
redox
4

Similar Publications

Signal Transduction Pathway Mediating Carotid Body Dependent Sympathetic Activation and Hypertension by Chronic Intermittent Hypoxia.

Function (Oxf)

January 2025

Institute for Integrative Physiology, Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, IL. 60637, USA.

Patients with obstructive sleep apnea (OSA) experience chronic intermittent hypoxia (CIH). OSA patients and CIH-treated rodents exhibit overactive sympathetic nervous system and hypertension, mediated through hyperactive carotid body (CB) chemoreflex. Activation of olfactory receptor 78 (Olfr78) by hydrogen sulfide (H2S) is implicated in CB activation and sympathetic nerve responses to CIH, but the downstream signaling pathways remain unknown.

View Article and Find Full Text PDF

The cystathionine beta-synthase (CBS) gene plays a critical role in numerous physiological processes, including cellular proliferation, bioenergetics, and redox balance, and has been implicated in many cancers, including breast and gastric cancers. Previous studies have suggested that VNTR polymorphism in intron 13 of the CBS gene may influence enzyme activity, as an increase in the number of repeats in this VNTR leads to a reduction in the activity of the CBS enzyme. In this case-control study, for the first time, we genotyped 107 patients with gastric cancer (and 111 healthy controls) and 138 patients with breast cancer (and 124 healthy controls) for the CBS VNTR polymorphism using PCR.

View Article and Find Full Text PDF

Circadian clock regulates plant development and physiology by anticipating daily environmental changes. Here we studied the core clock protein involved in β-aminobutyric acid (BABA)-inducible SAR resistance to Rhizopus stolonifer in peach fruit. BABA elicitation barely primed the accumulation of jasmonate or ethylene, whose regulation was associated with morning-loop gene expression.

View Article and Find Full Text PDF

Impact of Varicocele on The Expression of Testicular Enzymes Involved in The Transsulfuration Pathway.

Int J Fertil Steril

January 2025

Department of Reproductive Biotechnology, Reproductive Biomedicine Research Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. Email:

Background: Oxidative aggression is a hallmark of varicocele and may depend on decreased reactive ability of the endogenous antioxidant system following heat stress. We aimed to investigate the underlying mechanisms. Therefore, the expression of the main enzyme proteins involved in the generation of endogenous antioxidant power, cystathionine beta-synthase (CBS), cystathionine gamma-lyase (CSE), heme oxygenase (HO-1), and also, some of the metabolites (methionine, homocysteine, taurine and vitamin B6) reporting on their activity was investigated using a surgical varicocele model in rats.

View Article and Find Full Text PDF

Objective: Unilateral spatial neglect (USN) following right hemisphere stroke is more pronounced, severe, and persistent than in the left hemisphere. However, the pathophysiological mechanisms underlying USN remain largely unknown. This study aims to investigate the relationship between the fractional amplitude of low-frequency fluctuations (fALFF) in the right hemisphere of patients with post-stroke USN and the severity of neglect using resting-state functional near-infrared spectroscopy (fNIRS) technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!