Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Maps of cytoarchitectonically defined cortical areas have proven to be a valuable tool for anatomic localization of activated brain regions revealed by functional imaging studies. However, architectonic data require observations in a sample of postmortem brains. They can only be used reliably for comparison with functional data as probabilistic maps after spatial normalization to a common reference space. The complete architectonic analysis of an individual living brain has not been achievable to date, because the relationship remains unclear between laminar gray value changes of cerebral cortex in magnetic resonance (MR) images and those of cyto- and myeloarchitectonic histologic sections. We examined intensity profiles through the cortex in five imaging modalities: in vivo T1 and postmortem T2 MRI, one cell body stain, and two myelin stains. After visualizing the dissimilarities in the shapes of these profiles using a canonical analysis, differences between the profiles from the different image modalities were compared quantitatively. Subsequently, the profiles extracted from the in vivo T1-weighted images were estimated from profiles extracted from cyto- and myeloarchitectonic sections using linear combinations. We could verify statistically the mixed nature of the cortical T1 signal obtained in vivo: The MR intensity profiles were significantly more similar to myeloarchitectonic than to cytoarchitectonic profiles, but a weighted sum of both fitted the T1 profiles best.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6871702 | PMC |
http://dx.doi.org/10.1002/hbm.20082 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!