Conventional cytogenetic analysis currently stratifies acute myelogenous leukaemia (AML) into prognostically relevant groups. However, approximately 50% of adult AMLs have normal cytogenetics (NC-AMLs), and represent a heterogeneous and poorly understood group. We analysed gene expression in 55 AML samples including 53 cases from adult patients with NC-AML (n = 36), trisomy 8, t(15;17), t(8;21), t(11;19), 7q deletion, and two cell lines using 9000-gene DNA microarrays. Global hierarchical clustering showed that NC-AMLs are a heterogeneous group. Supervised analysis distinguished two subgroups of NC-AML: one subgroup constituted a homogeneous NC cluster ('pure NC-AML'), and the other NC-AMLs were close to the AML cases with translocations ('translocation like'). Gene expression signatures were also derived for patients with trisomy 8, as well as FLT3 and MLL gene duplications. Importantly, samples from 24 NC-AML patients who could be evaluated for clinical outcome were analysed. In all, 43 genes that discriminated two classes of patients with significantly different prognosis were identified. The poor prognosis class contained a majority of 'pure NC-AMLs', whereas the 'translocation-like' AMLs were in the good prognosis class. Discriminator genes included genes involved in drug resistance (TOP2B), protein transport (MTX2, SLC35A2), and cell signalling (MAPK1, PRKAB2). Our results demonstrate the transcriptional heterogeneity of NC-AMLs, and suggest the existence of 'translocation-like' NC-AMLs and of a gene expression signature that may predict response to chemotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1207910DOI Listing

Publication Analysis

Top Keywords

gene expression
16
acute myelogenous
8
prognosis class
8
gene
5
nc-amls
5
identification classes
4
classes acute
4
myelogenous leukaemias
4
leukaemias normal
4
normal karyotype
4

Similar Publications

Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Comparative analysis of regression algorithms for drug response prediction using GDSC dataset.

BMC Res Notes

January 2025

Department of Computer Engineering, Chungbuk National University, Chungdae-ro 1, Cheongju, 28644, Republic of Korea.

Background: Drug response prediction can infer the relationship between an individual's genetic profile and a drug, which can be used to determine the choice of treatment for an individual patient. Prediction of drug response is recently being performed using machine learning technology. However, high-throughput sequencing data produces thousands of features per patient.

View Article and Find Full Text PDF

Identification and functional characterization of AsWRKY9, a WRKY transcription factor modulating alliin biosynthesis in garlic (Allium sativum L.).

BMC Biol

January 2025

The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.

Background: The variations in alliin content are a crucial criterion for evaluating garlic quality and is the sole precursor for allicin biosynthesis, which is significant for the growth, development, and stress response of garlic. WRKY transcription factors are essential for enhancing stress resistance by regulating the synthesis of plant secondary metabolites. However, the molecular mechanisms regulating alliin biosynthesis remain unexplored.

View Article and Find Full Text PDF

Schizophrenia is one of the most debilitating mental illnesses affecting any age group. The mechanism and etiology of schizophrenia are extremely complex and multiple signaling pathways recruit genes implicated in the etiology of this disease. While the role of Wnt/β-catenin signaling in this disorder has been verified, the impact of long noncoding RNAs (lncRNAs) associated with this pathway has not been studied in schizophrenia.

View Article and Find Full Text PDF

RNA-Targeting CRISPR/CasRx system relieves disease symptoms in Huntington's disease models.

Mol Neurodegener

January 2025

Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.

Background: HD is a devastating neurodegenerative disorder caused by the expansion of CAG repeats in the HTT. Silencing the expression of mutated proteins is a therapeutic direction to rescue HD patients, and recent advances in gene editing technology such as CRISPR/CasRx have opened up new avenues for therapeutic intervention.

Methods: The CRISPR/CasRx system was employed to target human HTT exon 1, resulting in an efficient knockdown of HTT mRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!