Objective: The aim of this study was to ascertain factors that might be protective of the appearance of gross blood in the stools of breast-fed infants.

Methods: Logistic regression models were formed to search for variables possibly explaining the condition. In addition to the analyzed breast milk factors, mother's allergic disease was introduced into the models to control for its possible confounding effect. The breast milk samples, collected from mothers of infants with gross blood in stools (n = 23) and from mothers of healthy age-matched infants (n = 71), were analyzed for concentrations of transforming growth factor-beta2, tumor necrosis factor-alpha, interleukin (IL)-4, IL-10, prostaglandin (PG)E2, cysteinyl leukotrienes (Cys-LTs) and fatty acid composition.

Results And Conclusions: Increase in the concentrations of PGE2 and Cys-LTs in the breast milk together with mother's allergic disease reduced the likelihood of gross blood in stools in the breast-fed infant. The results suggest that no single factor, but a combination of immunomodulatory factors may protect the child from gross blood in the stools of breast-fed infants. Allergic disease was not a risk factor as mother's allergic disease appeared to counterbalance the gross blood in stools. Due to the preliminary nature of the study, the results need to be verified in a larger setting. The challenge for the future lies in identifying of such active compounds for dietary modification to enforce particularly the properties of the breast milk which are immunoprotective for the infant and to reduce the likelihood of intestinal disorders in at risk infants.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000081955DOI Listing

Publication Analysis

Top Keywords

gross blood
24
blood stools
24
breast milk
20
allergic disease
16
stools breast-fed
12
mother's allergic
12
infants gross
8
gross
6
blood
6
stools
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!