Cytokines play an important role in the regulation of homeostasis and inflammation. A de-regulated cytokine function can subsequently promote chronic inflammation. This is supported by clinical evidence showing the beneficial effect of inhibiting TNF-alpha through injection of antibodies and soluble receptor in disorders such as rheumatoid arthritis and Crohn's disease. Systemic anti-TNF-alpha therapy however is associated with infectious complications. We therefore suggest a concept for the local deposition of therapeutically active agents into areas of inflammation or malignancy, based on the use of hematopoietic storage and secretory granules as delivery vehicles. Hematopoietic cells are induced to express the therapeutically active protein and to store it in the secretory lysosomes. The cells migrate into a tumour or site of inflammation, where the cells become activated and release the contents of their secretory lysosomes resulting in the local delivery of the therapeutically active protein. In support of this concept, gene transfer and granule loading can be achieved using the soluble TNF-alpha receptor (sTNFR1) after cDNA expression in hematopoietic cell lines. Endoplasmic reticulum (ER)-export can be facilitated by the addition of a transmembrane domain, and constitutive secretion can be prevented by incorporating a cytosol-sorting signal resulting in secretory lysosome targeting. The sTNFR1 is released from the transmembrane domain by proteolytic cleavage and finally, regulated sTNFR1-secretion can be triggered by a calcium signal. In vivo investigations are currently determining the feasibility of local protein delivery at sites of inflammation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

therapeutically active
12
secretory granules
8
local delivery
8
sites inflammation
8
active protein
8
secretory lysosomes
8
transmembrane domain
8
inflammation
6
hematopoietic
4
hematopoietic secretory
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!