Phenotypic expression of the deafness-associated mitochondrial A1555G mutation in the 12S rRNA gene is influenced by aminoglycosides and complex inheritance of nuclear-encoded modifier genes. The position of a major nuclear modifier gene has been localized to chromosome 8p23.1, but the identification of this gene has remained elusive. Recently, we identified a second modifier gene, mitochondrial transcription factor B1 (TFB1M), involved in mitochondrial rRNA modification. In the present study, we tested three genes involved in mitochondrial tRNA or rRNA modification, and two genes associated with non-syndromic deafness, for linkage and linkage disequilibrium (LD) in 214 DNA samples from Spanish, Italian, and Arab-Israeli families with maternally inherited non-syndromic hearing loss. The multipoint non-parametric linkage analysis and transmission disequilibrium test testing were done using all families combined as well as divided based on linkage to the chromosome 8 locus and ethnicity. Two genes, MTO1 and GTPBP3, showed strongly suggestive linkage and significant LD results. Since both genes, as well as TFB1M, are involved in the process of mitochondrial RNA modification, it appears that the modification of mitochondrial RNA is an important regulatory pathway in the phenotypic expression of the deafness-associated mitochondrial A1555G mutation. This conclusion was supported by comparing linkage results of simulated genotypes with actual results for the four genes involved in mitochondrial RNA modification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymgme.2004.07.009 | DOI Listing |
CNS Neurosci Ther
January 2025
Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.
Objective: This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy.
Methods: Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models.
Background: Type 2 Diabetes Mellitus (T2DM) is a significant public health burden. Emerging evidence links volatile organic compounds (VOCs), such as benzene to endocrine disruption and metabolic dysfunction. However, the effects of chronic environmentally relevant VOC exposures on metabolic health are still emerging.
View Article and Find Full Text PDFBackground: Variants in the mitochondrial genome (mtDNA) cause a diverse collection of mitochondrial diseases and have extensive phenotypic overlap with Mendelian diseases encoded on the nuclear genome. The mtDNA is often not specifically evaluated in patients with suspected Mendelian disease, resulting in overlooked diagnostic variants.
Methods: Using dedicated pipelines to address the technical challenges posed by the mtDNA - circular genome, variant heteroplasmy, and nuclear misalignment - single nucleotide variants, small indels, and large mtDNA deletions were called from exome and genome sequencing data, in addition to RNA-sequencing when available.
BMC Genomics
January 2025
School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
Background: Glycyrrhiza glabra, which is widely used in medicine and therapy, is known as the 'king of traditional Chinese medicine'. In this study, we successfully assembled and annotated the mitochondrial and chloroplast genomes of G. glabra via high-throughput sequencing technology, combining the advantages of short-read (Illumina) and long-read (Oxford Nanopore) sequencing.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Dazhou Academy of Agricultural Sciences, Dazhou, 635000, China.
Background: Stemona tuberosa, a vital species in traditional Chinese medicine, has been extensively cultivated and utilized within its natural distribution over the past decades. While the chloroplast genome of S. tuberosa has been characterized, its mitochondrial genome (mitogenome) remains unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!