NADH-ubiquinone oxidoreductase or complex I deficiency is a frequently diagnosed enzyme defect of the oxidative phosphorylation (OXPHOS) system in humans. However, in many patients, with complex I deficiency and clinical symptoms suggestive of mitochondrial disease, often no genetic defect can be found after investigation of the most common mitochondrial DNA (mtDNA) mutations. In this study, 20 patients were selected with a biochemically documented complex I defect and no common mtDNA mutation. We used the Denaturing Gradient Gel Electrophoresis (DGGE) method with primers encompassing all mitochondrial encoded fragments, to search in a systematic manner for mutations in the mitochondrial genome of complex I. In our group of patients, we were able to detect a total of 96 nucleotide changes. We were not able to find any disease causing mutation in the mitochondrial encoded subunits of complex I. These results suggested that the complex I deficiency in this group of patients is most probably caused by a defect in one of the nuclear encoded structural genes of complex I, or in one of the genes involved in proper assembly of the enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpn.2004.07.006DOI Listing

Publication Analysis

Top Keywords

complex deficiency
16
mitochondrial encoded
12
complex
9
encoded subunits
8
subunits complex
8
patients complex
8
group patients
8
patients
5
mitochondrial
5
analysis mitochondrial
4

Similar Publications

DNA replication stress (RS), a prevalent feature of various malignancies, arises from both genetic mutations and genotoxic exposure. Elevated RS levels increase the vulnerability of cancer cells to ataxia telangiectasia and Rad3-related kinase inhibitors (ATRis). Here, we screened for DNA damage response inhibitors that enhance ATRi-induced cytotoxicity using SWI/SNF complex-deficient cells and identified a potent synergy between ATRi and poly(ADP-ribose) polymerase inhibitor (PARPi), particularly in SMARCA4-deficient cells.

View Article and Find Full Text PDF

Background: Depression is a pervasive mental health disorder with complex etiologies involving neurotransmitter imbalances, inflammation, and hormonal dysregulation. Emerging evidence highlights the significance of nutritional interventions in improving depressive symptoms.

Objective: This review explores the mechanisms of action and clinical applications of Vitamin D and Omega-3 fatty acids in managing depression, providing insights into their potential therapeutic roles.

View Article and Find Full Text PDF

Reducing endogenous CK levels accelerates fruit ripening in tomato by regulating ethylene biosynthesis and signalling pathway. Tomato is a typical climacteric fruit and is recognized as one of the most important horticultural crops globally. The ripening of tomato fruits is a complex process, highly regulated by phytohormones.

View Article and Find Full Text PDF

Novel early vertical ridge augmentation technique.

J Dent Sci

January 2025

School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.

Background/purpose: Multiple augmentation protocols are documented in the literature to rebuild the deficient alveolar ridge after tooth extraction; however, achieving adequate vertical augmentation remains the most challenging goal. This study demonstrated a novel surgical technique of early vertical ridge augmentation for post-dental extraction. This technique offers several biological and technical advantages regarding the timing of the procedure and its relative simplicity compared to other complex techniques.

View Article and Find Full Text PDF

Hormonal Regulation of Urokinase- and Tissue-Type Plasminogen Activator in Mouse Sertoli Cells.

Mol Reprod Dev

January 2025

Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, Rome, Italy.

A role for the plasminogen activator (PA) system has been postulated in mammalian gonads, considering the complex process of morphogenesis these organs undergo during their development. Our results show that mouse Sertoli cells under basal conditions produce both types of PA, tissue-type PA (tPA) and urokinase-type PA (uPA), and hormonal treatments increase the production of both enzymes. The increased enzyme secretion does not correlate with a parallel increase in their mRNAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!