Peptides derived from pathogens or tumors are selectively presented by the major histocompatibility complex proteins (MHC) to the T lymphocytes. Antigenic peptide-MHC complexes on the cell surface are specifically recognized by T cells and, in conjunction with co-factor interactions, can activate the T cells to initiate the necessary immune response against the target cells. Peptides that are capable of binding to multiple MHC molecules are potential T cell epitopes for diverse human populations that may be useful in vaccine design. Bioinformatical approaches to predict MHC binding peptides can facilitate the resource-consuming effort of T cell epitope identification. We describe a new method for predicting MHC binding based on peptide property models constructed using biophysical parameters of the constituent amino acids and a training set of known binders. The models can be applied to development of anti-tumor vaccines by scanning proteins over-expressed in cancer cells for peptides that bind to a variety of MHC molecules. The complete algorithm is described and illustrated in the context of identifying candidate T cell epitopes for melanomas and breast cancers. We analyzed MART-1, S-100, MBP, and CD63 for melanoma and p53, MUC1, cyclin B1, HER-2/neu, and CEA for breast cancer. In general, proteins over-expressed in cancer cells may be identified using DNA microarray expression profiling. Comparisons of model predictions with available experimental data were assessed. The candidate epitopes identified by such a computational approach must be evaluated experimentally but the approach can provide an efficient and focused strategy for anti-cancer immunotherapy development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymeth.2004.06.001 | DOI Listing |
J Clin Microbiol
January 2025
Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands.
Unlabelled: The World Health Organization (WHO) 2030 roadmap for schistosomiasis calls for development of highly sensitive and specific diagnostic tools to continue and sustain progress towards elimination. Serological assays are excellent for sensitive detection of primary schistosome infections and for schistosomiasis surveillance in near- and post-elimination settings. To develop accurate assay formats, it is necessary to identify defined antibody targets with low cross-reactivity and potential for standardized production.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China. Electronic address:
African swine fever virus (ASFV) is a complex DNA virus belonging to the family Asfarviridae. The outbreak of African swine fever (ASF) has caused huge economic losses to the pig farming industry. The K205R protein is a key target for detecting ASFV antibodies and represents an important antigen for early serologic diagnosis.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China.
Colorectal cancer is one of the most common malignant tumors in the world, and about 50% of its advanced patients will have liver metastasis. Preoperative assessment of the risk of liver metastasis in patients with colorectal cancer is of great significance for making individualized treatment plans. Traditional imaging examinations and tumor markers have some limitations in predicting the risk of liver metastasis.
View Article and Find Full Text PDFMol Biotechnol
January 2025
Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.
The etiological agent for the coronavirus disease 2019 (COVID-19), the SARS-CoV-2, caused a global pandemic. Although mRNA, viral-vectored, DNA, and recombinant protein vaccine candidates were effective against the SARS-CoV-2 Wuhan strain, the emergence of SARS-CoV-2 variants of concern (VOCs) reduced the protective efficacies of these vaccines. This necessitates the need for effective and accelerated vaccine development against mutated VOCs.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
Influenza remains a persistent global health challenge, largely due to the virus' continuous antigenic drift and occasional shift, which impede the development of a universal vaccine. To address this, the identification of broadly neutralizing antibodies and their epitopes is crucial. Nanobodies, with their unique characteristics and binding capacity, offer a promising avenue to identify such epitopes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!