Modulation of transmission in group I muscle afferent pathways to the somatosensory cortex and those to the alpha-motoneuron were investigated during active leg pedaling. Cerebral somatosensory evoked potentials (SEPs) and Soleus (Sol) H-reflexes following posterior tibial nerve stimulation were recorded at four different pedaling phases. The subjects were asked to perform pedaling at three different cadences (30, 45 and 60 rpm with 0.5 kp, cadence task; C-task) and with three different workloads (at 45 rpm with 0.0, 0.5 and 1.0 kp, load task; L-task). In both C- and L-tasks, Sol H-reflexes were modulated in a phase-dependent manner, showing an increase in the power phase and a decrease in the recovery phase. In contrast, the early SEP (P30-N40) components were modulated in a phase-dependent manner when the cadence and load were low. When focusing on the power phases, significant cadence- and load-dependent modulations of the P30-N40 were found, and inversely graded with the cadence and load. The H-reflex was found to be significantly decreased at the highest cadence, i.e., cadence-dependent modulation. In contrast, the H-reflex during the L-task was found to be proportional to the load. The correlation analysis between the size of H-reflex and the amount of background (BG) electromyographic (EMG) activity demonstrated that the H-reflex in the power phase did not depend on the BG EMG in either C- or L-task. These findings suggested that transmission of muscle afferents along the ascending pathways to the cerebral cortex and the spinal cord is independently controlled in accordance with the biomechanical constraints of active pedaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2004.09.054DOI Listing

Publication Analysis

Top Keywords

cadence-dependent modulation
8
somatosensory evoked
8
evoked potentials
8
active leg
8
leg pedaling
8
sol h-reflexes
8
modulated phase-dependent
8
phase-dependent manner
8
power phase
8
cadence load
8

Similar Publications

Cadence-dependent changes in corticospinal excitability of the biceps brachii during arm cycling.

J Neurophysiol

October 2015

School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada; and Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada

This is the first study to report the influence of different cadences on the modulation of supraspinal and spinal excitability during arm cycling. Supraspinal and spinal excitability were assessed using transcranial magnetic stimulation of the motor cortex and transmastoid electrical stimulation of the corticospinal tract, respectively. Transcranial magnetic stimulation-induced motor evoked potentials and transmastoid electrical stimulation-induced cervicomedullary evoked potentials (CMEPs) were recorded from the biceps brachii at two separate positions corresponding to elbow flexion and extension (6 and 12 o'clock relative to a clock face, respectively) while arm cycling at 30, 60 and 90 rpm.

View Article and Find Full Text PDF

Load- and cadence-dependent modulation of somatosensory evoked potentials and Soleus H-reflexes during active leg pedaling in humans.

Brain Res

December 2004

Division of Health and Sport Education, United Graduate School of Education, Tokyo Gakugei University, 1-33 Yayoi-cho, Inage-Ku, Chiba City 263-8522, Japan.

Modulation of transmission in group I muscle afferent pathways to the somatosensory cortex and those to the alpha-motoneuron were investigated during active leg pedaling. Cerebral somatosensory evoked potentials (SEPs) and Soleus (Sol) H-reflexes following posterior tibial nerve stimulation were recorded at four different pedaling phases. The subjects were asked to perform pedaling at three different cadences (30, 45 and 60 rpm with 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!