In present study, we investigated voltage-gated Ca2+ channel (VGCC) expressions in the hippocampus of the Mongolian gerbil and its association with different sequelae of spontaneous seizures, in an effort to identify the epileptogenesis in this animal. In the hippocampus of pre-seizure seizure sensitive (SS) gerbils, VGCC subunit expressions were significantly elevated, as compared with seizure-resistant (SR) gerbils. In 3 h postictal group, the alteration of VGCC expressions showed regional- and neuronal-specific manners; VGCC immunoreactivities in principal neurons were markedly decreased; however, their immunoreactivities in interneurons were significantly elevated. These results are the first comprehensive description of the distribution of VGCC immunoreactivities in the normal and epileptic hippocampus of gerbils, and suggest that these alterations in the hippocampus of the SS gerbil may be related with tissue excitability and have a role in modulating recurrent excitation following seizures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2004.09.040 | DOI Listing |
Acta Physiol (Oxf)
February 2025
Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.
Aim: Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Biology, University of Miami, Coral Gables, FL 33143 USA
Neuroendocrine cells react to physical, chemical, and synaptic signals originating from tissues and the nervous system, releasing hormones that regulate various body functions beyond the synapse. Neuroendocrine cells are often embedded in complex tissues making direct tests of their activation mechanisms and signaling effects difficult to study. In the nematode worm , four uterine-vulval (uv1) neuroendocrine cells sit above the vulval canal next to the egg-laying circuit, releasing tyramine and neuropeptides that feedback to inhibit egg laying.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2025
Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, Ireland.
Cholinergic tone is elevated in obstructive lung conditions such as COPD and asthma, but the cellular mechanisms underlying cholinergic contractions of airway smooth muscle (ASM) are still unclear. Some studies report an important role for L-type Ca channels (LTCC) and Ano1 Ca-activated Cl™ channels (CACC) in these responses, but others dispute their importance. Cholinergic contractions of ASM involve activation of M3Rs, however stimulation of M2Rs exerts a profound hypersensitisation of these responses.
View Article and Find Full Text PDFBiology (Basel)
November 2024
Epigenomic Medicine Laboratory at prospED Polytechnic, Melbourne, VIC 3053, Australia.
Primary aldosteronism is characterised by the excessive production of aldosterone, which is a key regulator of salt metabolism, and is the most common cause of secondary hypertension. Studies have investigated the association between primary aldosteronism and genetic alterations, with pathogenic mutations being identified. This includes a glycine-to-arginine substitution at position 151 (G151R) of the G protein-activated inward rectifier potassium (K) channel 4 (GIRK4), which is encoded by the gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!