Phage display technology makes it possible to introduce and rapidly screen diversity in antibody binding sites. Chain shuffling has been successfully used to humanize murine antibody fragments and also to obtain affinity matured variants. Here we report a different application of this method: the use of chain shuffling to overcome improper prokaryotic expression behavior of a hybridoma-derived single-chain antibody fragment. Construction and expression of such recombinant antibody fragments remain as empirical entities, hampered by the inability to express some antibody genes coming from eukaryotic cells in bacterial expression systems. Such problems are different for each combination of variable regions and can be serious enough to preclude the use of some hybridomas as sources of V regions to obtain recombinant antibody fragments. The particular binding properties and potential usefulness of some monoclonal antibodies make it highly desirable to bypass these technical limitations in order to develop smaller size therapeutic agents in the form of antibody fragments. The 14F7 mouse monoclonal antibody is one such attractive candidate due to its high specificity for the N-glycolyl GM3 ganglioside overexpressed in tumor cells and its ability to distinguish this antigen from closely related gangliosides like N-acetyl GM3. Our goal was to construct a phage-displayed single-chain Fv antibody fragment derived from 14F7. After cloning the original variable regions from the 14F7 hybridoma in a phagemid vector, we were unable to detect either binding activity or even expression of antibody fragments in bacteria, despite repetitive efforts. We constructed light-chain shuffling libraries, from which functional antibody fragments were readily selected. These combined the original 14F7 heavy chain variable region with a wide variety of unrelated murine and human light-chain variable regions. New antibody fragments retained the valuable properties of the monoclonal antibody in terms of fine specificity, affinity and tumor recognition. They were readily produced by bacteria, either in phage-displayed form or as soluble molecules, and provided a panel of potentially useful variants for cancer diagnosis and immunotherapy. Chain shuffling and phage display were found to be useful strategies for selecting antibody fragments on the basis of both prokaryotic expression and antigen binding criteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jim.2004.07.002 | DOI Listing |
Protein Sci
February 2025
Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA.
We have developed a portfolio of antibody-based modules that can be prefabricated as standalone units and snapped together in plug-and-play fashion to create uniquely powerful multifunctional assemblies. The basic building blocks are derived from multiple pairs of native and modified Fab scaffolds and protein G (PG) variants engineered by phage display to introduce high pair-wise specificity. The variety of possible Fab-PG pairings provides a highly orthogonal system that can be exploited to perform challenging cell biology operations in a straightforward manner.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia.
Mannan and β-(1→3)-glucan are two polysaccharide markers that are characteristic for a number of fungal pathogens, including , which is the most common cause of invasive mycoses in humans. In this study, we examined epitope specificity of two monoclonal antibodies, CM532 and FG70, which recognize certain oligosaccharide fragments of these fungal polysaccharides. Using a panel of biotinylated oligosaccharides as coating antigens, we found that the CM532 antibody obtained by immunization with the pentamannoside β-Man-(1→2)-β-Man-(1→2)-α-Man-(1→2)-α-Man-(1→2)-α-Man KLH conjugate, selectively recognizes the trisaccharide β-Man-(1→2)-α-Man-(1→2)-α-Man epitope.
View Article and Find Full Text PDFViruses
January 2025
School of Public Health, Bengbu Medical University, Bengbu 233030, China.
The re-emergence of the mpox pandemic poses considerable challenges to human health and societal development. There is an urgent need for effective prevention and treatment strategies against the mpox virus (MPXV). In this study, we focused on the A35R protein and created a chimeric A35R-Fc protein by fusing the Fc region of IgG to its C-terminal.
View Article and Find Full Text PDFViruses
December 2024
Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
Crimean-Congo hemorrhagic fever (CCHF) is a serious tick-borne disease with a wide geographical distribution. Classified as a level 4 biosecurity risk pathogen, CCHF can be transmitted cross-species due to its aerosol infectivity and ability to cause severe hemorrhagic fever outbreaks with high morbidity and mortality. However, current methods for detecting anti-CCHFV antibodies are limited.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry, Technical University of Denmark, 206 Kemitorvet, 2800 Kgs Lyngby, Denmark.
A human epidermal growth factor receptor 2 (HER2)-specific nanobody called 2Rs15d, containing a His3LysHis6 segment at the C-terminus, was recombinantly produced. Subsequent site-selective acylation on the C-terminally activated lysine residue allowed installation of the cytotoxin monomethyl auristatin E-functionalized cathepsin B-sensitive payload to provide a highly homogenous nanobody-drug conjugate (NBC), which demonstrated high potency and selectivity for HER2-positive breast cancer models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!