A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Digital image analysis for diagnosis of cutaneous melanoma. Development of a highly effective computer algorithm based on analysis of 837 melanocytic lesions. | LitMetric

Background: Digital image analysis has been introduced into the diagnosis of skin lesions based on dermoscopic pictures.

Objectives: To develop a computer algorithm for the diagnosis of melanocytic lesions and to compare its diagnostic accuracy with the results of established dermoscopic classification rules.

Methods: In the Department of Dermatology, University of Tuebingen, Germany, 837 melanocytic skin lesions were prospectively imaged by a dermoscopy video system in consecutive patients. Of these lesions, 269 were excised and examined by histopathology: 84 were classified as cutaneous melanomas and 185 as benign melanocytic naevi. The remaining 568 lesions were diagnosed by dermoscopy as benign. Digital image analysis was performed in all 837 benign and malignant melanocytic lesions using 64 different analytical parameters.

Results: For lesions imaged completely (diameter < or = 12 mm), three analytical parameters were found to distinguish clearly between benign and malignant lesions, while in incompletely imaged lesions six parameters enabled differentiation. Based on the respective parameters and logistic regression analysis, a diagnostic computer algorithm for melanocytic lesions was developed. Its diagnostic accuracy was 82% for completely imaged and 84% for partially imaged lesions. All 837 melanocytic lesions were classified by established dermoscopic algorithms and the diagnostic accuracy was found to be in the same range (ABCD rule 78%, Menzies' score 83%, seven-point checklist 88%, and seven features for melanoma 81%).

Conclusions: A diagnostic algorithm for digital image analysis of melanocytic lesions can achieve the same range of diagnostic accuracy as the application of dermoscopic classification rules by experts. The present diagnostic algorithm, however, still requires a medical expert who is qualified to recognize cutaneous lesions as being of melanocytic origin.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2133.2004.06210.xDOI Listing

Publication Analysis

Top Keywords

melanocytic lesions
24
digital image
16
image analysis
16
diagnostic accuracy
16
lesions
15
computer algorithm
12
837 melanocytic
12
melanocytic
9
skin lesions
8
established dermoscopic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!