Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Using a specific antibody (SMI 31), the state of phosphorylation of high and medium molecular weight neurofilaments (NF-H and NF-M) was studied in 22 leprous and four nonleprous human peripheral nerves by means of immunohistochemistry, sodium dodecyl sulfate-poly acrylamide gel electrophoresis (SDS-PAGE) and Western immunoblot (WB). The results thus obtained were compared with morphological changes in the respective nerves studied through light and electron microscopy. Many of the leprous nerves showing minimal pathology revealed lack of or weak staining with SMI 31, denoting dephosphorylation. Remyelinated fibres stained intensely with SMI 31 antibody. The WB analysis of Triton X-100 insoluble cytoskeletal preparation showed absence of regular SMI 31 reactive bands corresponding to 200 and 150 kDa molecular weight (NF-H and NF-M, respectively) in 10 nerves. Three of the 10 nerves revealed presence of NF protein bands in SDS-PAGE but not in WB. Presence of additional protein band (following NF-M) was seen in four nerves. Two nerves revealed NF-H band but not NF-M band and one nerve showed trace positivity. In the remaining five nerves presence of all the three NF bands was seen. Thus, 77.3% (17/22) of human leprous nerves studied showed abnormal phosphorylation of NF protein(s). The ultrastructural study showed abnormal compaction and arraying of NF at the periphery of the axons in the fibres with altered axon to myelin thickness ratio (atrophied fibres) as well as at the Schmidt-Lantermann (S-L) cleft region. Such NF changes were more pronounced in the severely atrophied axons suggesting a direct correlation. The observed well-spaced NF in the remyelinated fibres under ultrastructural study was in keeping with both intense SMI 31 staining and presence of NF triplet bands seen in WBs in four of leprous nerves that showed a large number of regenerating fibres suggesting reversal of changes with regeneration. Findings in the present study suggest that atrophy, that is, the reduction in axonal calibre and paranodal demyelination, seen in leprous nerves may result from dephosphorylation of NF-H and NF-M proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2990.2004.00578.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!