The influence of naringin on the oxidative state of rats with streptozotocin-induced acute hyperglycaemia.

Z Naturforsch C J Biosci

National Research Center, Biochemistry Department, Division of Genetic Engineering and Biotechnology, El Tahrir St., El Dokki 12622, Cairo, Egypt.

Published: December 2004

The effect of various doses (0, 10, 20, 40, or 80 mg/kg body weight) of naringin (a citrus flavonone) was studied on streptozotocin (STZ)-induced hyperglycaemic rats to evaluate the possible hypoglycaemic and antioxidant activity of naringin in diabetes. In comparison to the normoglycaemic group the treatment of rats with a single dose of STZ (65 mg/kg body weight) only revealed a significant increase (P < 0.05) in plasma hydrogen peroxide (H2O2) by 230%, increased the thiobarbituric acid reactive substances (TBARS) as index of the lipid peroxidation level by 69%, while total antioxidant activity was decreased by 36%, with a consistent significant decrease (P < 0.05) in the activity of erythrocytes antioxidative enzymes catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and paraoxonase (PON). Exogenous administration of individual gradual doses of naringin to hyperglycaemic rats causes a dose-dependent decrease of the glucose level, an increase of the insulin concentration, a decrease of the H2O2 and TBARS levels, as well as the increase of the total antioxidant status with an increase of antioxidant enzyme activities (CAT, SOD, GPx, and PON). From this study, it may be concluded that all doses of naringin provided a significant amelioration of hypoglycaemic and antioxidant activity in STZ-induced diabetic rats, however, the greatest effect of naringin was observed at 80 mg/kg body weight.

Download full-text PDF

Source
http://dx.doi.org/10.1515/znc-2004-9-1018DOI Listing

Publication Analysis

Top Keywords

mg/kg body
12
body weight
12
antioxidant activity
12
hyperglycaemic rats
8
hypoglycaemic antioxidant
8
total antioxidant
8
doses naringin
8
rats
5
naringin
5
antioxidant
5

Similar Publications

Background: Piperine, a secondary metabolite, affects the antihyperlipidemic effect of Ezetimibe (EZ). Hyperlipidemia is one of the independent risk factors for cardiovascular disorders such as atherosclerosis. Antihyperlipidemic drugs are essential for reducing cardiovascular events and patient mortality.

View Article and Find Full Text PDF

2-[F]Fluoropropionic Acid PET Imaging of Doxorubicin-Induced Cardiotoxicity.

Mol Imaging Biol

January 2025

Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, Room BB-1604, New York, NY, 10021, USA.

Purpose: Treatment of pediatric cancers with doxorubicin is a common and predictable cause of cardiomyopathy. Early diagnosis of treatment-induced cardiotoxicity and intervention are major determinants for the prevention of advanced disease. The onset of cardiomyopathies is often accompanied by profound changes in lipid metabolism, including an enhanced uptake of short-chain fatty acids (SCFA).

View Article and Find Full Text PDF

Efficient and accurate nanocarrier development for targeted drug delivery is hindered by a lack of methods to analyze its cell-level biodistribution across whole organisms. Here we present Single Cell Precision Nanocarrier Identification (SCP-Nano), an integrated experimental and deep learning pipeline to comprehensively quantify the targeting of nanocarriers throughout the whole mouse body at single-cell resolution. SCP-Nano reveals the tissue distribution patterns of lipid nanoparticles (LNPs) after different injection routes at doses as low as 0.

View Article and Find Full Text PDF

Although lithium (LIT) therapy is key in managing bipolar disorder long-term, prolonged use significantly contributes to acquired Nephrogenic Diabetes Insipidus (NDI). This study examined whether combining Silymarin (SIL) with Vitamin C (Vit C) enhances protection against lithium-induced nephrotoxicity in rats, comparing their individual antioxidant effects as well. Rats subjected to Li exposure were provided with a standard commercial diet supplemented with 80 mmol LiCl per kilogram for 28 days.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is associated with cognitive impairments which are linked to a deficit in cholinergic function. The objective of this study was to evaluate the ability of TeMac™ to prevent memory impairment in scopolamine-rats model of Alzheimer's disease and by in silico approaches to identify molecules in TeMac™ inhibiting acetylcholinesterase. The cholinergic cognitive dysfunction was induced by intraperitoneal injection of scopolamine (1 mg/kg daily) in male Wistar rats for seven consecutive days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!