Abnormal Leydig Cell aggregation in the fetal testis of rats exposed to di (n-butyl) phthalate and its possible role in testicular dysgenesis.

Endocrinology

Medical Research Center Human Reproductive Sciences Unit, Centre for Reproductive Biology, The University of Edinburgh Academic Centre, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom.

Published: February 2005

AI Article Synopsis

  • Fetal exposure to di (n-butyl) phthalate (DBP) in male rats leads to testicular changes resembling testicular dysgenesis syndrome in humans, causing abnormal Leydig cell aggregation.
  • Leydig cells in DBP-exposed rats show reduced size and testosterone levels without an increase in their number, resulting in isolated Sertoli cells being trapped within these aggregates.
  • The presence of intratubular Leydig cells ultimately disrupts normal sperm development, suggesting that these fetal changes could be pivotal in understanding testicular dysgenesis syndrome in humans.

Article Abstract

Fetal exposure of male rats to di (n-butyl) phthalate (DBP) induces testicular changes remarkably similar to testicular dysgenesis syndrome in humans; these include induction of focal areas of dysgenetic tubules in otherwise normal testes. In searching for the fetal origins of the latter, we used image analysis to show that exposure to 500 mg/kg DBP [embryonic day (E)13.5-20.5)] caused abnormal aggregation of Leydig cells centrally in the fetal testis. This aggregation was not due to increase in Leydig cell number, and Leydig cell size was significantly reduced in DBP-exposed animals, as were testosterone levels and immunoexpression of P450 side-chain cleavage enzyme. The Leydig cell aggregates did not exhibit evidence of focal proliferation at E17.5-19.5. Using confocal microscopy and Leydig (3beta-hydroxysteroid dehydrogenase) and Sertoli (anti-Mullerian hormone) cell-specific markers, we show that fetal Leydig cell aggregates in DBP-exposed animals trap isolated Sertoli cells within them at E21.5. These areas of intermingled cells are still apparent on postnatal d 4, after cessation of DBP treatment, when they may form misshapen seminiferous cords that trap (intratubular) Leydig cells within them. These centrally located dysgenetic tubules contain germ cells in early puberty, but by adulthood they are Sertoli cell only, implying that presence of intratubular Leydig cells interferes with spermatogenesis. It is concluded that DBP-induced fetal Leydig cell aggregation may be a key event in formation of focal dysgenetic areas in the testis, and identification of the mechanisms underlying these events may give new insights into the fetal origins of testicular dysgenesis syndrome disorders in the human.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2004-0671DOI Listing

Publication Analysis

Top Keywords

leydig cell
24
testicular dysgenesis
12
leydig cells
12
leydig
9
cell aggregation
8
fetal testis
8
n-butyl phthalate
8
dysgenesis syndrome
8
dysgenetic tubules
8
fetal origins
8

Similar Publications

Even though Leydig cell tumor (LCT) represents the most common neoplasia among testicular sex cord-stromal tumors (SCSTs), it is a rare condition, comprising 1-2% of all testicular tumors, with a 10% risk of malignancy most commonly located in retroperitoneal lymph nodes. LCTs may demonstrate various clinical manifestations - from asymptomatic intratesticular swelling through nonspecific symptoms such as loss of libido, impotence or infertility, up to feminizing or virilizing syndromes due to hormonal activity of the tumor. This article presents a case of Leydig cell tumor that was associated with azoospermia what have rarely been reported worldwide.

View Article and Find Full Text PDF

Introduction: Getah virus (GETV) is a zoonotic virus transmitted via a mosquito-vertebrate cycle. While previous studies have explored the epidemiology and pathogenicity of GETV in various species, its molecular mechanisms remain largely unexplored.

Methods: This study investigated the impact of GETV infection and associated molecular mechanisms on reactive oxygen species (ROS) and autophagy levels in mouse Leydig cells both and .

View Article and Find Full Text PDF

Successful management of Leydig Cell Tumor in a 65-year-Old patient: A rare case report.

Urol Case Rep

January 2025

Faculty member, Faculty of Medicine, Pathology Department, Damascus University, Damascus, Syrian Arab Republic.

Leydig cell tumors (LCTs) are rare testicular neoplasms, representing 1-3% of all testicular tumors. A 65-year-old male presented with a painless left scrotal mass. Ultrasound revealed a 61 × 53 × 35 mm tumor with heterogeneous echogenicity and abundant blood supply.

View Article and Find Full Text PDF

Transferrin Receptor 2 (TfR2) is a homolog of Transferrin Receptor 1 (TfR1), involved in regulating intra and extracellular iron levels. Altered iron pathways have been associated with cancer onset and progression; however, their role in canine tumors remains poorly explored. This study investigated TfR2 immunohistochemical expression in non-neoplastic canine testis for the first time and in the most common types of canine testicular tumors: intratubular seminomas (ITSEMs), diffuse seminomas (DSEMs), Leydig cell tumors (LCTs), and Sertoli cell tumors (SCTs).

View Article and Find Full Text PDF

A determination of the main regulators of necroptosis in testicular tissue under different heat stresses.

J Mol Histol

January 2025

Department of Histology and Embryology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Türkiye.

Although minimal increases in testicular temperature can compromise spermatogenesis and lead to fertility-related problems, the basic mechanism involved in germ cell destruction as a response to heat stress is still unclear. However, necroptosis is known to regulate a number of physiological and pathological events. This study investigated the role of RIPK1/RIPK3 and MLKL, the main regulators of necroptosis, against different heat stresses in testis tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!