Objective: Platelets are known to play an important role in hemostasis, thrombosis, wound healing, and inflammation. Platelet-induced modulation of inflammation and adaptive immune responses are mediated in part through tumor necrosis factor (TNF) family member ligands, including CD154, Fas ligand, and TNFalpha, that are expressed upon platelet activation. The present study investigated whether platelets and megakaryocytes also express TNF-related apoptosis-inducing ligand (TRAIL), another pro-apoptotic member of the TNF superfamily.

Materials And Methods: Immunoprecipitation, enzyme-linked immunosorbent assay, and flow cytometry were used to assess TRAIL protein expression on isolated platelets, in vitro-derived megakaryocytes and premegakaryocyte cell lines. Reverse-transcription polymerase chain reaction and transient transfection of TRAIL promoter/reporter constructs were used to elucidate mechanisms of TRAIL regulation during megakaryocyte differentiation. TRAIL-dependent cytotoxicity assays were performed to determine if platelet-derived TRAIL induces apoptosis of TRAIL sensitive target cells.

Results: Activated platelets expressed both membrane-bound and soluble TRAIL. TRAIL was also expressed by megakaryocytes, and in vitro studies showed that TRAIL expression was induced upon megakaryocyte differentiation. TRAIL expression was mediated by increased transcriptional activity of the TRAIL promoter, suggesting lineage-specific regulation of TRAIL during megakaryocyte differentiation. Abundant detergent-extractable, full-length TRAIL protein was observed in the lysates of platelets and megakaryocytes, but only low concentrations of TRAIL were released by nondetergent extraction methods.

Conclusion: The data reported herein show that platelets express TRAIL that is synthesized by megakaryocytes and was expressed by activated platelets. While these data expand the spectrum of TNF family proteins expressed in platelets, the function of platelet-derived TRAIL is not known.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exphem.2004.07.022DOI Listing

Publication Analysis

Top Keywords

trail
17
megakaryocyte differentiation
12
platelets
9
tnf-related apoptosis-inducing
8
apoptosis-inducing ligand
8
ligand trail
8
tnf family
8
platelets megakaryocytes
8
trail protein
8
platelet-derived trail
8

Similar Publications

Modern management has much to learn from ancient wisdoms. Management structures based on corporate trends were transferred from business to services such as healthcare to promote cost-efficiency and productivity. In this article, I argue that the short-term approach of corporate leaders being brought into healthcare for 'transformation' has led to a trail of service dismemberment with no discernible clinical gain for those we seek to serve.

View Article and Find Full Text PDF

Redefining Ketamine Pharmacology for Antidepressant Action: Synergistic NMDA and Opioid Receptor Interactions?

Am J Psychiatry

January 2025

Biobehavioral Imaging and Molecular Neuropsychopharmacology Section, NIDA, Baltimore (Levinstein, Budinich, Michaelides); Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona (Bonaventura); Neuropharmacology and Pain Group, Neuroscience Program, IDIBELL-Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona (Bonaventura); Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford (Schatzberg); Experimental Therapeutics and Pathophysiology Branch, NIMH, Bethesda (Zarate); Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (Michaelides).

Ketamine is a racemic compound and medication comprised of ()-ketamine and ()-ketamine enantiomers and its metabolites. It has been used for decades as a dissociative anesthetic, analgesic, and recreational drug. More recently, ketamine, its enantiomers, and its metabolites have been used or are being investigated for the treatment of refractory depression, as well as for comorbid disorders such as anxiety, obsessive-compulsive, and opioid use disorders.

View Article and Find Full Text PDF

Community-acquired pneumonia (CAP) has a significant impact on public health, especially in light of the recent SARS-CoV-2 pandemic. To enhance disease characterization and improve understanding of the underlying mechanisms, a comprehensive analysis of the plasma lipidome, metabolome and proteome was conducted in patients with viral and bacterial CAP infections, including those induced by SARS-CoV-2. Lipidomic, metabolomic and proteomic profiling were conducted on plasma samples of 69 patients suffering either from viral or bacterial CAP.

View Article and Find Full Text PDF

TRAIL agonists rescue mice from radiation-induced lung, skin or esophageal injury.

J Clin Invest

January 2025

Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, United States of America.

Radiotherapy can be limited by pneumonitis which is impacted by innate immunity, including pathways regulated by TRAIL death receptor DR5. We investigated whether DR5 agonists could rescue mice from toxic effects of radiation and found two different agonists, parenteral PEGylated trimeric-TRAIL (TLY012) and oral TRAIL-Inducing Compound (TIC10/ONC201) could reduce pneumonitis, alveolar-wall thickness, and oxygen desaturation. Lung protection extended to late effects of radiation including less fibrosis at 22-weeks in TLY012-rescued survivors versus un-rescued surviving irradiated-mice.

View Article and Find Full Text PDF

CCN1 is a matricellular protein highly expressed in esophageal squamous cell carcinoma (ESCC) but hardly detectable in esophageal adenocarcinoma (EAC). Expression of CCN1 in EAC cells leads to TRAIL-mediated apoptosis. Unlike TRAIL, which primarily triggers cell death, APRIL and BAFF promote cell growth via NFκB signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!