Objectives: Implantable devices are major risk factors for hospital-acquired infection. Biomaterials coated with silver oxide or silver alloy have all been used in attempts to reduce infection, in most cases with controversial or disappointing clinical results. We have developed a completely new approach using supercritical carbon dioxide to impregnate silicone with nanoparticulate silver metal. This study aimed to evaluate the impregnated polymer for antimicrobial activity.
Methods: After impregnation the nature of the impregnation was determined by transmission electron microscopy. Two series of polymer discs were then tested, one washed in deionized water and the other unwashed. In each series, half of the discs were coated with a plasma protein conditioning film. The serial plate transfer test was used as a screen for persisting activity. Bacterial adherence to the polymers and the rate of kill, and effect on planktonic bacteria were measured by chemiluminescence and viable counts. Release rates of silver ions from the polymers in the presence and absence of plasma was measured using inductively coupled plasma mass spectrometry (ICP-MS).
Results: Tests for antimicrobial activity under various conditions showed mixed results, explained by the modes and rates of release of silver ions. While washing removed much of the initial activity there was continued release of silver ions. Unexpectedly, this was not blocked by conditioning film.
Conclusions: The methodology allows for the first time silver impregnation (as opposed to coating) of medical polymers and promises to lead to an antimicrobial biomaterial whose activity is not restricted by increasing antibiotic resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jac/dkh478 | DOI Listing |
J Dent Sci
January 2025
Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
Background/purpose: Various pulp-covering materials offer advantages in regenerative root canal treatment, but each has limitations, highlighting the need for more effective antibacterial strategies for pulp repair and regeneration. Mesoporous bioactive glasses (MBG) show significant biological activity, making them valuable in tissue/dental repair. Silver-incorporated MBG exhibits promising antibacterial effects against various bacteria; copper ions are crucial in regulating angiogenesis signals.
View Article and Find Full Text PDFAnalyst
January 2025
Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China.
Antibiotic residue detection plays an important role in protecting human health, but real-time, rapid, and highly sensitive detection is still challenging. Herein, gold and silver nanoparticles (Au-Ag NPs) were grown on the surface of optical fibers and a 50 nm thick gold film was deposited on the sensor's surface to fabricate the Au-Ag@Au fiber SPR sensor. The sensitivity of the sensor reached 3512 nm per RIU in the refractive index range of 1.
View Article and Find Full Text PDFPharm Nanotechnol
January 2025
Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America.
Metallic nanostructures play a vital role in technological advancement, providing exceptional performance and improved adaptability in comparison to their bulk equivalents. Conventional synthesis techniques frequently depend on dangerous reducing agents to transform metal ions into Nanoparticles (NPs), which presents considerable environmental and health issues. In contrast, the approach of green synthesis, which emphasizes the use of non-toxic reagents, has garnered significant interest as a sustainable method for the fabrication of Metallic Nanoparticles (MNPs).
View Article and Find Full Text PDFAnalyst
January 2025
Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
A paper-based potentiometric sensor integrated with a polymeric hydrogel has been developed for sodium ion (Na) determination in human urine. The construction of an all-solid-state ion selective electrode (s-ISE) and an all-solid-state reference electrode (s-RE) on a photo paper substrate was achieved using an inkjet printing method. For s-ISE fabrication, carbon nanotubes (CNTs) and gold nanoparticles (AuNPs) were printed on the substrate as a nanocomposite solid contact.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.
Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.
Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!