Heterochromatin regulates cell type-specific long-range chromatin interactions essential for directed recombination.

Cell

Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.

Published: November 2004

Mating-type switching in Schizosaccharomyces pombe involves replacing genetic information at the expressed mat1 locus with sequences copied from one of two silent donor loci, mat2-P or mat3-M, located within a 20-kb heterochromatic domain. Donor selection is dictated by cell type: mat2 is the preferred donor in M cells, and mat3 is the preferred donor in P cells. Here we show that a recombination-promoting complex (RPC) containing Swi2 and Swi5 proteins exhibits cell type-specific localization pattern at the silent mating-type region and this differential localization modulates donor preference during mating-type switching. In P cells, RPC localization is restricted to a recombination enhancer located adjacent to mat3, but in M cells, RPC spreads in cis across the entire silent mating-type interval in a heterochromatin-dependent manner. Our analyses implicate heterochromatin in long-range regulatory interactions and suggest that heterochromatin imposes at the mating-type region structural organization that is important for the donor-choice mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2004.10.020DOI Listing

Publication Analysis

Top Keywords

cell type-specific
8
mating-type switching
8
preferred donor
8
donor cells
8
silent mating-type
8
mating-type region
8
cells rpc
8
mating-type
5
donor
5
heterochromatin regulates
4

Similar Publications

The classic plant growth-promoting phytohormone cytokinin has been identified and established as a mediator of pathogen resistance in different plant species. However, the resistance effect of structurally different cytokinins appears to vary and may regulate diverse mechanisms to establish resistance. Hence, we comparatively analysed the impact of six different adenine- and phenylurea-type cytokinins on the well-established pathosystem Nicotiana tabacum-Pseudomonas syringae.

View Article and Find Full Text PDF

Cytokinin Plays a Multifaceted Role in Ralstonia solanacearum-Triggered Plant Disease Development.

Mol Plant Pathol

December 2024

State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China.

Cytokinin signalling plays both positive and negative roles in plant resistance to pathogens. It is not clear whether the role of cytokinin changes at the different stages of pathogen infection. Arabidopsis thaliana sequentially exhibits distinct root morphological symptoms during Ralstonia solanacearum infection, which offers a good system to investigate function of cytokinin in the whole pathogen infection process.

View Article and Find Full Text PDF

Adiponectin deficiency prevents chronic colitis-associated colonic fibrosis via inhibiting CXCL13 production.

J Adv Res

December 2024

Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China. Electronic address:

Introduction: Colonic fibrosis is a long-term complication of inflammatory bowel disease (IBD), often leading to functional impairment, intestinal obstruction, and surgery. Adiponectin (APN) is an adipokine derived from adipocytes that plays a pleiotropic role in fibrosis regulation, depending on tissue and cell type specific or disease context, but its role in colonic fibrosis remains unclear.

Objective: To explore the role and involved mechanism of APN in chronic colitis-associated colonic fibrosis.

View Article and Find Full Text PDF

COCOA: A Framework for Fine-scale Mapping Cell-type-specific Chromatin Compartments with Epigenomic Information.

Genomics Proteomics Bioinformatics

December 2024

Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.

Chromatin compartmentalization and epigenomic modification are crucial in cell differentiation and diseases development. However, precise mapping of chromatin compartmental patterns requires Hi-C or Micro-C data at high sequencing depth. Exploring the systematic relationship between epigenomic modifications and compartmental patterns remains challenging.

View Article and Find Full Text PDF

Identification of Brain Cell Type-Specific Therapeutic Targets for Glioma From Genetics.

CNS Neurosci Ther

December 2024

The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Background: Previous research has demonstrated correlations between the complex types and functions of brain cells and the etiology of glioma. However, the causal relationship between gene expression regulation in specific brain cell types and glioma risk, along with its therapeutic implications, remains underexplored.

Methods: Utilizing brain cell type-specific cis-expression quantitative trait loci (cis-eQTLs) and glioma genome-wide association study (GWAS) datasets in conjunction with Mendelian randomization (MR) and colocalization analyses, we conducted a systematic investigation to determine whether an association exists between the gene expression of specific brain cell types and the susceptibility to glioma, including its subtypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!