Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Using functional magnetic resonance imaging, we assessed variation in location and intensity of blood oxygen level-dependent contrast associated with movements induced by transcranial magnetic stimulation or volition.
Background: Anatomic location and within-subject repeatability of blood oxygen level-dependent responses induced by transcranial magnetic stimulation comprise critical information to the use of interleaved transcranial magnetic stimulation/functional magnetic resonance imaging as a neuroscience tool.
Methods: Eleven healthy adults were scanned 3 times each at 1.5 T. Interleaved with functional magnetic resonance imaging, 1-Hz transcranial magnetic stimulation was applied over motor cortex. VOL was alternated with transcranial magnetic stimulation over the scans.
Results: Intra-subject standard deviations in blood oxygen level-dependent locations ranged between 3 and 6 millimeters, allowing localization to subregions of the motor strip. Coil placement relative to blood oxygen level-dependent location varied more than blood oxygen level-dependent location (sdx = 9.5mm, sdy = 8.7 mm, sdz = 9.0mm) with consistent anterior displacement (dy = 21.8 mm, P = <0.025). Analysis of variance did not detect significant differences between transcranial magnetic stimulation and VOL blood oxygen level-dependent locations or intensities, in contrast to significant intensity differences detected in auditory blood oxygen level dependence.
Conclusion: The high repeatability of location of transcranial magnetic stimulation-induced blood oxygen level-dependent activation suggests that transcranial magnetic stimulation/functional magnetic resonance imaging stimulation can be used as a precise tool in investigation of cortical mechanisms. The similarity between VOL and transcranial magnetic stimulation suggests that transcranial magnetic stimulation may act through natural brain movement circuits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.wnn.0000117864.42205.6d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!