Extended x-ray absorption fine structure (EXAFS) spectroscopy was combined with thermodynamic and kinetic approaches to investigate zinc binding to a zinc finger (C2H2) and a tetrathiolate (C4) peptide. Both peptides represent structural zinc sites of proteins and rapidly bind a single zinc ion with picomolar dissociation constants. In competition with EDTA the transfer of peptide-bound zinc ions proved to be 6 orders of magnitude faster than predicted for a dissociation-association mechanism thus requiring ligand exchange mechanisms via peptide-zinc-EDTA complexes. EXAFS spectra of C2H2 showed the expected Cys2His2-ligand geometry when fully loaded with zinc. For a 2-fold excess of peptide, however, the existence of zinc-bridged peptide-peptide complexes with dominating sulfur coordination could be clearly shown. Whereas zinc binding kinetics of C2H2 appeared as a simple second order process, the suggested mechanism for C4 comprises a zinc-bridged Zn-(C4)2 species as well as a Zn-C4 species with less than 4 metal-bound thiolates, which is supported by EXAFS results. A rapid equilibrium of bound and unbound states of individual ligands might explain the kinetic instability of zinc-peptide complexes, which enables fast ligand exchange during the encounter of occupied and unoccupied acceptor sites. Depending on relative concentrations and stabilities, this results in a rapid transfer of zinc ions in the virtual absence of free zinc ions, as seen for the zinc transfer to EDTA, or in the formation of zinc-bridged complexes, as seen for both peptides with excess of peptides over available zinc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M409425200 | DOI Listing |
Sci Rep
January 2025
Hydrobiology Lab, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
The utilization of cyanobacteria toxin-producing blooms for metal ions adsorption has garnered significant attention over the last decade. This study investigates the efficacy of dead cells from Microcystis aeruginosa blooms, collected from agricultural drainage water reservoir, in removing of cadmium, lead, and zinc ions from aqueous solutions, and simultaneously addressing the mitigation of toxin-producing M. aeruginosa bloom.
View Article and Find Full Text PDFThe detection of lead ions (Pb) is crucial due to its harmful effects on health and the environment. In this article, what we believe to be a novel dielectric-metal hybrid structure localized surface plasmon resonance (LSPR) sensor for ultra-trace detection of Pb is proposed, featuring a zinc sulfide layer, silver nanodisks (Ag-disks), and graphene oxide (GO) covering the Ag-disks. The sensor works by detecting the variation of gold nanoparticles (AuNPs) on its surface when Pb cleaves a substrate strand linked to a DNAzyme, causing the AuNPs modified on the substrate strand to disperse.
View Article and Find Full Text PDFDalton Trans
January 2025
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
Nowadays, benzimidazole and its derivatives are widely assembled into multifunctional materials with various properties such as mechanochromism, photochromism, thermochromism and electrochromism. Herein, two novel zinc(II) coordination compounds, [Zn(L)Br]·2HO (1) and [Zn(L)Cl]·2HO (2) (L = tetra(1-benzo[]imidazol-2-yl)ethene), have been constructed one-pot facile synthesis from bis(1-benzo[]imidazol-2-yl)methane (L) and zinc(II) salts. The ligand L with a CC double bond was formed by C-C coupling of two sp-C atoms of L in solvothermal synthesis, which provides a new strategy to generate the conjugation system conveniently.
View Article and Find Full Text PDFSmall Methods
January 2025
School of Physical Science and Technology, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, China.
Aqueous zinc-ion battery has low cost, and environmental friendliness, emerging as a promising candidate for next-generation battery systems. However, it still suffers from a limited cycling life, caused by dendritic Zn growth and severe side reactions. Recent research highlights that the Zn (002) crystal plane exhibits superior anti-corrosive properties and a horizontal growth pattern.
View Article and Find Full Text PDFSmall
January 2025
Department of Radiation Science and Technology, Delft University of Technology, Delft, 2629 JB, The Netherlands.
Anode-free aqueous zinc metal batteries (AZMBs) offer significant potential for energy storage due to their low cost and environmental benefits. TiCT MXene provides several advantages over traditional metallic current collectors like Cu and Ti, including better Zn plating affinity, lightweight, and flexibility. However, self-freestanding MXene current collectors in AZMBs remain underexplored, likely due to challenges with Zn deposition reversibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!