Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Laboratory breadboard results of a high-speed adaptive-optics system are presented. The wave-front sensor for the adaptive-optics system is based on a quadrature interferometer, which directly measures the turbulence-induced phase aberrations. The spatial light modulator used in the phase-conjugate engine was a microelectromechanical systems-based piston-only correction device with 1024 actuators. Laboratory experiments were conducted with this system utilizing Kolmogorov phase screens to simulate atmospheric phase distortions. The adaptive-optics system achieved correction speeds in excess of 800 Hz and Strehl ratios greater than 0.5 with the Kolmogorov phase screens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.43.005585 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!