AI Article Synopsis

Article Abstract

The basic structure of alpha-LiFeO2, lithium iron oxide, is a cubic NaCl-type structure with a lattice constant of 0.42 nm; some short-range ordering characterized by octahedral clusters exists. The local structure of the short-range ordering was investigated by transmission electron microscopy and electron diffraction. A new short-range ordering structure was found in local areas. The local structure has a cubic lattice with a doubled lattice constant. The occupation factors of cations on Wyckoff sites 4(a) and 4(b) are different from those on 24(d) sites, but the stoichiometric composition in cubic clusters is the same as the macroscopic composition. The number of pairs in which iron cations exist in nearest-neighbor sites and next nearest-neighbor sites is reduced in the structure. This means that a magnetic interaction between the iron cations is reduced by cation ordering even without spin ordering at room temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S0108768104023456DOI Listing

Publication Analysis

Top Keywords

short-range ordering
16
transmission electron
8
electron microscopy
8
microscopy electron
8
electron diffraction
8
ordering structure
8
structure alpha-lifeo2
8
lattice constant
8
local structure
8
iron cations
8

Similar Publications

We incorporated Espaloma forcefield parameterization into MoSDeF tools for performing molecular dynamics simulations of organic molecules with HOOMD-Blue. We compared equilibrium morphologies predicted for perylene and poly-3-hexylthiophene (P3HT) with the ESP-UA forcefield in the present work against prior work using the OPLS-UA forcefield. We found that, after resolving the chemical ambiguities in molecular topologies, ESP-UA is similar to GAFF.

View Article and Find Full Text PDF

This study investigates the effect of ultrasonic-assisted preparation on the structural and physicochemical properties of water caltrop starch-palmitic acid complexes as a function of ultrasound intensity and treatment time. All samples exhibited the characteristic birefringence of starch-lipid complexes under the polarized microscope, and flake-like and irregular structure under scanning electron microscope (SEM), indicating the formation of complexes through ultrasonic-assisted preparation. X-ray diffraction pattern further confirmed the transition from the original A-type structure for native starch to V-type structure for starch-lipid complexes, and the relative crystallinity of starch-lipid complexes increased as the ultrasound intensity and treatment time increased.

View Article and Find Full Text PDF

The diaspore-type crystalline structure is historically well-known in mineralogy, but it has also been widely studied for various applications in the field of catalysis, electrocatalysis, and batteries. However, once two anions of similar ionic size but different electronegativity, such as F and O or more precisely OH, are combined, the knowledge of the location of these two anions is of paramount importance to understand the chemical properties in relation with the generation of hydrogen bonds. Coprecipitation and hydrothermal routes were used to prepare hydroxide-fluorides that crystallize all in an orthorhombic structure with four formula units per cell.

View Article and Find Full Text PDF

Ductilization of 2.6-GPa alloys via short-range ordered interfaces and supranano precipitates.

Science

January 2025

Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), Hysitron Applied Research Center in China (HARCC) and Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.

Higher strength and higher ductility are desirable for structural materials. However, ultrastrong alloys inevitably show decreased strain-hardening capacity, limiting their uniform elongation. We present a supranano (<10 nanometers) and short-range ordering design for grain interiors and grain boundary regions, respectively, in fine-grained alloys based on vanadium, cobalt, and nickel, with additions of tungsten, copper, aluminum, and boron.

View Article and Find Full Text PDF

Environmental Catalysis for NO Reduction by Manipulating the Dynamic Coordination Environment of Active Sites.

Environ Sci Technol

January 2025

Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.

Nowadays, it is challenging to achieve SO-tolerant environmental catalysis for NO reduction because of the thermodynamically favorable transformation of reactive sites to inactive sulfate species in the presence of SO. Herein, we achieve enhanced low-temperature SO-tolerant NO reduction by manipulating the dynamic coordination environment of active sites. Engineered by coordination chemistry, SiO-CeO composite oxides with a short-range ordered Ce-O-Si structure were elaborately constructed on a TiO support.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!