Using FM4-64 to label endosomes and Abp1p-GFP or Sac6p-GFP to label actin patches, we find that (1) endosomes colocalize with actin patches as they assemble at the bud cortex; (2) endosomes colocalize with actin patches as they undergo linear, retrograde movement from buds toward mother cells; and (3) actin patches interact with and disassemble at FM4-64-labeled internal compartments. We also show that retrograde flow of actin cables mediates retrograde actin patch movement. An Arp2/3 complex mutation decreases the frequency of cortical, nonlinear actin patch movements, but has no effect on the velocity of linear, retrograde actin patch movement. Rather, linear actin patch movement occurs at the same velocity and direction as the movement of actin cables. Moreover, actin patches require actin cables for retrograde movements and colocalize with actin cables as they undergo retrograde movement. Our studies support a mechanism whereby actin cables serve as "conveyor belts" for retrograde movement and delivery of actin patches/endosomes to FM4-64-labeled internal compartments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2172478PMC
http://dx.doi.org/10.1083/jcb.200404173DOI Listing

Publication Analysis

Top Keywords

actin patches
24
actin cables
20
actin
17
actin patch
16
colocalize actin
12
retrograde movement
12
patch movement
12
movement
8
endosomes colocalize
8
linear retrograde
8

Similar Publications

Background: Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the accumulation of pathological proteins and synaptic dysfunction. This study aims to investigate the molecular and functional differences between human induced pluripotent stem cells (hiPSCs) derived from patients with sporadic AD (sAD) and age-matched controls (healthy subjects, HS), focusing on their neuronal differentiation and synaptic properties in order to better understand the cellular and molecular mechanisms underlying AD pathology.

Methods: Skin fibroblasts from sAD patients (n = 5) and HS subjects (n = 5) were reprogrammed into hiPSCs using non-integrating Sendai virus vectors.

View Article and Find Full Text PDF

During host infection, and related unicellular parasites move using gliding, which differs fundamentally from other known mechanisms of eukaryotic cell motility. Gliding is thought to be powered by a thin layer of flowing filamentous (F)-actin sandwiched between the plasma membrane and a myosin-covered inner membrane complex. How this surface actin layer drives the various gliding modes observed in experiments-helical, circular, twirling and patch, pendulum or rolling-is unclear.

View Article and Find Full Text PDF

Dynamic three dimensional environment for efficient and large scale generation of smooth muscle cells from hiPSCs.

Stem Cell Res Ther

December 2024

Department of Biomedical Engineering, The University of Alabama at Birmingham, Volker Hall, 1670 University Boulevard, Birmingham, AL, 35255, USA.

Article Synopsis
  • Chronic ischemic limb disease can lead to amputations, making it a major medical concern, and smooth muscle cells (SMCs) play a key role in various cardiovascular issues.
  • Researchers tested two new methods for converting human induced-pluripotent stem cells (hiPSCs) into SMCs, comparing traditional 2D techniques with innovative 3D followed by 2D approaches.
  • Results showed that the 3D + 2D protocols significantly increased the number of hiPSC-SMCs produced and confirmed their effectiveness through various in-vitro and in-vivo experiments, indicating a promising avenue for treating ischemic limb conditions.
View Article and Find Full Text PDF

Primary open-angle glaucoma (POAG) is the most common form of glaucoma and the leading cause of irreversible vision loss and blindness worldwide. Intraocular pressure (IOP) is the only modifiable risk factor, and prompt treatment to lower IOP can effectively slow the rate of vision loss due to glaucoma. Trabecular meshwork (TM) cells can maintain IOP homeostasis by correcting and adjusting the resistance to aqueous humor outflow in response to sustained pressure changes.

View Article and Find Full Text PDF

Our knowledge of the assembly and dynamics of the cytokinetic contractile ring (CR) in animal cells remains incomplete. We have previously used super-resolution light microscopy and platinum replica electron microscopy to elucidate the ultrastructural organization of the CR in first division sea urchin embryos. To date, our studies indicate that the CR initiates as an equatorial band of clusters containing myosin II, actin, septin and anillin, which then congress over time into patches which coalesce into a linear array characteristic of mature CRs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!