Conjugation of proteins to ubiquitin plays a central role for a number of cellular processes including endocytosis, DNA repair and degradation by the 26S proteasome. However, ubiquitination is reversible as a number of deubiquitinating enzymes mediate the disassembly of ubiquitin-protein conjugates. Some deubiquitinating enzymes are associated with the 26S proteasome contributing to and regulating the particle's activity. Here, we characterise fission yeast Uch2 and Ubp6, two proteasome associated deubiquitinating enzymes. The human orthologues of these enzymes are known as Uch37 and Usp14, respectively. We report that the subunit Uch2/Uch37 is the major deubiquitinating enzyme associated with the fission yeast 26S proteasome. In contrast, the activity of Ubp6 appears to play a more regulatory and/or structural role involving the proteasome subunits Mts1/Rpn9, Mts2/Rpt2 and Mts3/Rpn12, as Ubp6 becomes essential when activity of these subunits is compromised by conditional mutations. Finally, when the genes encoding Uch2/Uch37 and Ubp6 are disrupted, the cells are viable without showing obvious signs of impaired ubiquitin-dependent proteolysis, indicating that other deubiquitinating enzymes may remedy for the redundancy of these enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2004.09.057 | DOI Listing |
FASEB J
January 2025
State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei, China.
Hantaan virus (HTNV) infection causes severe hemorrhagic fever with renal syndrome (HFRS) in humans and the infectious process can be regulated by autophagy. The phosphatase and tensin homolog (PTEN) protein has antiviral effects and plays a critical role in the autophagy pathway. However, the relationship between PTEN and HTNV infection is not clear and whether PTEN-regulated autophagy involves in HTNV replication is unknown.
View Article and Find Full Text PDFExp Mol Med
January 2025
Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.
In response to extra- and intracellular stimuli that constantly challenge and disturb the proteome, cells rapidly change their proteolytic capacity to maintain proteostasis. Failure of such efforts often becomes a major cause of diseases or is associated with exacerbation. Increase in protein breakdown occurs at multiple steps in the ubiquitin-proteasome system, and the regulation of ubiquitination has been extensively studied.
View Article and Find Full Text PDFThe 26S proteasome complex is the hub for regulated protein degradation in the cell. It is composed of two biochemically distinct complexes: the 20S core particle with proteolytic active sites in an internal chamber and the 19S regulatory particle, consisting of a lid and base subcomplex. The base contains ubiquitin receptors and an AAA+ (ATPases associated with various cellular activities) motor that unfolds substrates prior to degradation.
View Article and Find Full Text PDFiScience
November 2024
Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL, USA.
Bruton's tyrosine kinase (BTK) inhibitor, ibrutinib, has been shown to synergize with proteasome inhibitors (PIs) in reducing the viability of cells derived from B cell malignancies, but the mechanism is not known. We report here that an off-target effect of ibrutinib causes synergy because not all BTK inhibitors exhibited the synergistic effect, and those that synergized did so even in cells that do not express BTK. The allosteric BTK inhibitor CGI-1746 showed the strongest synergy.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Laboratory of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland.
Ethylene is an important plant hormone whose production relies on the action of key enzymes, one of which is 1-aminocyclopropane-1-carboxylate synthase (ACS). There are three classes of ACS, which are all partially regulated by degradation through the ubiquitin-proteasome system (UPS), which regulates ethylene production. Arabidopsis has a single class III ACS, ACS7, but although it is known to be degraded by the 26S proteasome, the UPS proteins involved are poorly characterised.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!