The aim of this study was to establish the capacity of thermoresponsive poly(N-isopropylacrylamide) copolymer films to deliver bioactive concentrations of vascular endothelial growth factor (VEGF165) to human aortic endothelial cells (HAEC) over an extended time period. Films were prepared using a 50:50 (w/w) mixture of non-crosslinkable and crosslinkable copolymers of the following monomer compositions (w/w): 85:15, N-isopropylacrylamide (NiPAAm):N-tert-butylacrylamide (NtBAAm); and 85:13:2 NiPAAm:NtBAAm:acrylamidobenzophenone (ABzPh, crosslinking agent), respectively. After crosslinking by UV irradiation, the ability of films to incorporate a fluorescently labeled carrier protein (FITC-labeled BSA, 1 mg loaded per film), at 4 degrees C, was first established. Incorporation into the matrix was confirmed by the observation that increasing film thickness from 5 to 10 microm increased release from collapsed films at 37 degrees C (1.76 +/- 0.15 and 10.98 +/- 3.38 microg/mL, respectively, at 24 h postloading) and that this difference was maintained at 5 days postloading (1.81 +/- 0.25 and 13.8 +/- 2.3 microg/mL, respectively). Incorporation was also confirmed by visualization using confocal microscopy. When 10-microm films were loaded with a BSA solution (1 mg/mL) containing VEGF165 (3 microg/mL), sustained release of VEGF165 was observed (10.75 +/- 3.11 ng at 24 h; a total of 31.32 +/- 8.50 ng over 7 days). Furthermore, eluted VEGF165 increased HAEC proliferation by 18.2% over control. The absence of cytotoxic species in medium released from the copolymer films was confirmed by the lack of effect of medium (incubated with copolymer films for 3 days) on HAEC viability. In conclusion this study has shown that NiPAAm:NtBAAm copolymers can be loaded with a therapeutic protein and can deliver bioactive concentrations to human vascular endothelial cells over an extended time period.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.30192DOI Listing

Publication Analysis

Top Keywords

copolymer films
16
vascular endothelial
12
endothelial cells
12
polyn-isopropylacrylamide copolymer
8
films
8
deliver bioactive
8
bioactive concentrations
8
extended time
8
time period
8
+/-
6

Similar Publications

Encapsulation of Hydrogen Peroxide in PVA/PVP Hydrogels for Medical Applications.

Gels

January 2025

Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.

Researchers have been investigating the physical and morphological properties of biodegradable polymer and copolymer films, blending them with other chemicals to solve challenges in medical, industrial, and eco-environmental fields. The present study introduces a novel, straightforward method for preparing biodegradable hydrogels based on polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) for medical applications. The resulting PVA/PVP-based hydrogel uniquely combines the water absorbency, biocompatibility, and biodegradability of the polymer composite.

View Article and Find Full Text PDF

Multilayered organosiloxane films with self-healing ability converted from block copolymer nanocomposites.

Chem Commun (Camb)

January 2025

Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.

Self-healable, multilayered organosiloxane films were prepared thermal conversion of lamellar organosiloxane films containing poly(ethylene oxide)-polydimethylsiloxane-poly(ethylene oxide) block copolymers. The incorporation of silanolate groups enabled crack healing through dynamic siloxane equilibration. The enhanced hardness and suppressed cyclic siloxane formation resulting from the multilayered structure exhibit potential for practical applications.

View Article and Find Full Text PDF

Poly(lactic acid)-based materials with enhanced gas permeability for modified atmosphere packaging of Chinese bayberry.

Int J Biol Macromol

January 2025

College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010010, China. Electronic address:

Biodegradable plastics are increasingly utilized in packaging, driven by green chemistry and environmental responsibility. Among them, poly(L-lactic acid) (PLLA) stands out due to its biodegradability and biocompatibility. However, its limited gas permeability and selectivity hinder its application in produce preservation.

View Article and Find Full Text PDF

Enhancement of Thermal, Mechanical, and Oxidative Properties of Polypropylene Composites with Exfoliated Hexagonal Boron Nitride Nanosheets.

ACS Omega

January 2025

Department of Materials Science and Engineering, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea.

This study investigates the enhancement of polypropylene (PP) composites through the incorporation of exfoliated hexagonal boron nitride (h-BN) nanosheets. The preparation process involved exfoliating h-BN in a liquid phase using a high-pressure homogenizer, followed by the coating of PP pellets with the exfoliated nanosheets using an acoustic mixer. Melt extrusion was then employed to fabricate h-BN-reinforced PP composite films.

View Article and Find Full Text PDF

Tunable Cluster Luminescence and High Quantum Yield in Amine-Modified Maleic Anhydride Polymers.

Langmuir

January 2025

The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.

Cluster luminescent materials (CLgens) with nonconjugated structures have attracted considerable attention. However, their low quantum yield and limited emission wavelengths, which are confined to the blue-green spectrum, continue to restrict their applicability. In this study, maleic anhydride polymer chains were modified with -tristyrylene-1,2-diamine (TPM-NH), creating a secondary donor-acceptor structure through freely rotatable phenyl groups and amino-anhydride interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!