We developed a technique to compute structural entropy directly from protein sequences. We explored the possibility of using structural entropy to identify residues involved in thermal stabilization of various protein families. Examples include methanococcal adenylate kinase, Ribonuclease HI and holocytochrome c(551). Our results show that the positions of the largest structural entropy differences between wild type and mutant usually coincide with the residues relevant to thermostability. We also observed a good linear relationship between the average structural entropy and the melting temperatures for adenylate kinase and its chimeric constructs. To validate this linear relationship, we compiled a large dataset comprised of 1153 sequences and found that most protein families still display similar linear relationships. Our results suggest that the multitude of interactions involved in thermal stabilization may be generalized into the tendency of proteins to maintain local structural conservation. The linear relationship between structural entropy and protein thermostability should be useful in the study of protein thermal stabilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.20263 | DOI Listing |
J Am Chem Soc
January 2025
Department of Physical Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Lattice distortion and disorder in the chemical environment of magnetic atoms within high-entropy compounds present intriguing issues in the modulation of magnetic functional compounds. However, the complexity inherent in high-entropy disordered systems has resulted in a relative scarcity of comprehensive investigations exploring the magnetic functional mechanisms of these alloys. Herein, we investigate the magnetocaloric effect (MCE) of the high-entropy intermetallic compound GdTbDyHoErCo.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Materials Science, University of Patras, 26504 Patras, Greece.
Monte Carlo molecular simulations of curve-shaped rods show the propensity of such shapes to polymorphism revealing both smectic and polar nematic phases. The nematic exhibits a nanoscale modulated local structure characterized by a unique, polar, -symmetry axis that tightly spirals generating a mirror-symmetry-breaking organization of the achiral rods-form chirality. A comprehensive characterization of the polarity and its symmetries in the nematic phase confirms that the nanoscale modulation is distinct from the elastic deformations of a uniaxial nematic director in the twist-bend nematic phase.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nanjing University, College of Engineering and Applied Sciences, No. 163 Xianlin Avenue, Qixia District, Nanjing, Nanjing, CHINA.
Electrolyte engineering has emerged as an effective strategy for stabilizing Zn-metal anodes. However, a single solute or solvent additive is far from sufficient to meet the requirements for electrolyte cycling stability. Here, we report a new-type high-entropy electrolyte composed of equal molar amounts of Zn(OTf)2 and LiOTf, along with equal volumes of H2O, triethyl phosphate, and dimethyl sulfoxide, which enhances electrolyte stability by increasing solvation entropy.
View Article and Find Full Text PDFHealth Inf Sci Syst
December 2025
School of Mathematics and Computing, University of Southern Queensland, 487-535 West Street, Toowoomba, QLD 4350 Australia.
Purpose: This paper aims to develop a three-dimensional (3D) Alzheimer's disease (AD) prediction method, thereby bettering current predictive methods, which struggle to fully harness the potential of structural magnetic resonance imaging (sMRI) data.
Methods: Traditional convolutional neural networks encounter pressing difficulties in accurately focusing on the AD lesion structure. To address this issue, a 3D decoupling, self-attention network for AD prediction is proposed.
RSC Adv
January 2025
National Centre of Excellence in Physical Chemistry, University of Peshawar Peshawar Pakistan.
In this study, a binary composite adsorbent based on activated carbon and phosphoric acid geopolymer foam (ACP) was prepared by combining phosphoric acid geopolymer (PAGP) with activated carbon (AC) and applied for the removal of methylene blue (MB). Activated carbon was thoroughly mixed with a mixture of fly ash and metakaolin in varying ratios, followed by phosphoric acid activation and thermal curing. The ACP adsorbent was characterized using scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectrophotometer, X-ray diffractometer (XRD), surface area analyser (SAP), and thermogravimetric analyser (TGA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!