Abnormal RNA processing and altered expression of serin-rich proteins in minimal-change nephrotic syndrome.

Pediatr Res

Unité INSERM U581, Hôpital Henri Mondor, 51 Avenue du Mal de Lattre Tassigny, 94010 Creteil, France.

Published: January 2005

Mechanisms underlying the pathophysiology of minimal-change nephrotic syndrome (MCNS), the most frequent glomerular disease in children, remain elusive, but recent findings argue for a T cell dysfunction. Starting from a differential cDNA library from T cells of a patient under relapse and remission, we identified 16 transcripts specific for MCNS. All of these transcripts that were selectively up-regulated during the relapse phase of the disease were generated by alternative splicing of known genes. This abnormal RNA expression was associated with a down-regulation of serin-rich protein 75 and serin-rich protein 40, two proteins involved in mRNA splicing. Taken together, these data suggest that T cell dysfunction in MCNS is associated with abnormal mRNA splicing.

Download full-text PDF

Source
http://dx.doi.org/10.1203/01.PDR.0000148013.53429.5BDOI Listing

Publication Analysis

Top Keywords

abnormal rna
8
minimal-change nephrotic
8
nephrotic syndrome
8
cell dysfunction
8
serin-rich protein
8
mrna splicing
8
rna processing
4
processing altered
4
altered expression
4
expression serin-rich
4

Similar Publications

Background: The emerging incidence of pathogenic liver conditions is turning into a major concern for global health. Induction of pyroptosis in hepatocytes instigates cellular disintegration, which in turn liberates substantial quantities of pro-inflammatory intracellular substances, thereby accelerating the advancement of liver fibrosis. Consequently, directing therapeutic efforts towards inhibiting pyroptosis could potentially serve as an innovative approach in managing inflammation related chronic hepatic disorders.

View Article and Find Full Text PDF

Indole derivatives and their associated microbial genera are associated with the 1-year changes in cardiometabolic risk markers in Chinese adults.

Nutr J

December 2024

Department of Nutrition, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, Anhui, China.

Background: Although emerging evidence suggests that indole derivatives, microbial metabolites of tryptophan, may improve cardiometabolic health, the effective metabolites remain unclear. Also, the gut microbiota that involved in producing indole derivatives are less studied. We identified microbial taxa that can predict serum concentrations of the key indole metabolite indole-3-propionic acid (IPA) at population level and investigated the associations of indole derivatives and IPA-predicting microbial genera with cardiometabolic risk markers.

View Article and Find Full Text PDF

A novel ARCN1 splice-site variant in a Chinese girl with central precocious puberty, intrauterine growth restriction, microcephaly, and microretrognathia.

BMC Pediatr

December 2024

Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, China.

The ARCN1 gene encodes the delta subunit of the coatomer protein complex I (COPI), which is essential for mediating protein transport from the Golgi complex to the endoplasmic reticulum. Variants in ARCN1 are associated with clinical features such as microcephaly, microretrognathia, intrauterine growth restriction, short rhizomelic stature, and developmental delays. We present a case of a patient exhibiting intrauterine growth restriction, preterm birth, microcephaly, micrognathia, and central precocious puberty.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is associated with cellular abnormalities, tissue and organ dysfunctions, and periodontitis. This investigation examined the relationship between the oral microbiome and salivary biomarkers in T2DM patients with or without periodontitis. This cohort (35-80 years) included systemically healthy non-periodontitis (NP; n = 31), T2DM without periodontitis (DWoP; n = 32) and T2DM with periodontitis (DWP; n = 29).

View Article and Find Full Text PDF

Nuclear respiratory factor-1 (NRF1) induction drives mitochondrial biogenesis and attenuates amyloid beta-induced mitochondrial dysfunction and neurotoxicity.

Neurotherapeutics

December 2024

Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA; Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, 77030, USA. Electronic address:

Mitochondrial dysfunction is an important driver of neurodegeneration and synaptic abnormalities in Alzheimer's disease (AD). Amyloid beta (Aβ) in mitochondria leads to increased reactive oxygen species (ROS) production, resulting in a vicious cycle of oxidative stress in coordination with a defective electron transport chain (ETC), decreasing ATP production. AD neurons exhibit impaired mitochondrial dynamics, evidenced by fusion and fission imbalances, increased fragmentation, and deficient mitochondrial biogenesis, contributing to fewer mitochondria in brains of AD patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!