Effects of a long-term spaceflight on immunoglobulin heavy chains of the urodele amphibian Pleurodeles waltl.

J Appl Physiol (1985)

Laboratoire de Biologie Expérimentale et Immunologie, EA 3442, Université Henri Poincaré-Nancy 1, Boulevard des Aiguillettes, BP 239, F-54506 Vandoeuvre-lès-Nancy cedex, France.

Published: March 2005

A variety of immune parameters are modified during and after a spaceflight. The effects of spaceflights on cellular immunity are well documented; however, little is known about the effects of these flights on humoral immunity. During the Genesis space experiment, two adult Pleurodeles waltl (urodele amphibian) stayed 5 mo onboard Mir and were subjected to oral immunization. Animals were killed 10 days after their return to earth. IgM and IgY heavy-chain transcripts in their spleens were quantified by Northern blotting. The use of the different VH families (coding for antibody heavy-chain variable domains) in IgM heavy chain transcripts was also analyzed. Results were compared with those obtained with ground control animals and animals reared in classical conditions in our animal facilities. We observed that, 10 days after the return on earth, the level of IgM heavy-chain transcription was normal but the level of IgY heavy-chain transcription was at least three times higher than in control animals. We also observed that the use of the different VH families in IgM heavy-chain transcripts was modified by the flight. These data suggest that the spaceflight affected the antibody response against the antigens contained in the food.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00957.2004DOI Listing

Publication Analysis

Top Keywords

urodele amphibian
8
pleurodeles waltl
8
days return
8
return earth
8
igy heavy-chain
8
heavy-chain transcripts
8
control animals
8
igm heavy-chain
8
heavy-chain transcription
8
heavy-chain
5

Similar Publications

Iberian ribbed newts.

Curr Biol

January 2025

Department of Biological Sciences, Columbia University, New York, NY 10027, USA. Electronic address:

Matheson et al. introduce the Iberian ribbed newt (Pleurodeles waltl), a species of salamander that lives some of its adult life on land and some in water, requiring remarkable physiological and behavioral plasticity to adapt to these very different environments.

View Article and Find Full Text PDF

This study introduces a novel neuromechanical model employing a detailed spiking neural network to explore the role of axial proprioceptive sensory feedback, namely stretch feedback, in salamander locomotion. Unlike previous studies that often oversimplified the dynamics of the locomotor networks, our model includes detailed simulations of the classes of neurons that are considered responsible for generating movement patterns. The locomotor circuits, modeled as a spiking neural network of adaptive leaky integrate-and-fire neurons, are coupled to a three-dimensional mechanical model of a salamander with realistic physical parameters and simulated muscles.

View Article and Find Full Text PDF

The importance of trait variation has long been recognized in ecological and evolutionary research. The divergence of sexually dimorphic traits (e.g.

View Article and Find Full Text PDF

Background: The pancreas exhibits diverse structures and roles across vertebrates. The pancreas has evolved to include both endocrine and exocrine cells, a change that occurred during the transition from fish to amphibian. This event emphasizes the evolutionary significance of amphibians.

View Article and Find Full Text PDF

Evolution of rod bipolar cells and rod vision.

J Physiol

January 2025

Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA.

Bipolar cells are vertebrate retinal interneurons conveying signals from rod and cone photoreceptors to amacrine and ganglion cells. Bipolar cells are found in all vertebrates and have many structural and molecular affinities with photoreceptors; they probably appeared very early during vertebrate evolution in conjunction with rod and cone progenitors. There are two types of bipolar cells, responding to central illumination with depolarization (ON) or hyperpolarization (OFF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!