Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Cardiac arrest (CA) is associated with poor neurological outcome and is associated with a poor understanding of the cerebral hemodynamic and metabolic changes. The objective of this study was to determine the applicability of near-infrared spectroscopy (NIRS), to observe the changes in cerebral total hemoglobin (T-Hb) reflecting cerebral blood volume, oxygenation state of Hb, oxidized cytochrome oxidase (Cyto-C), and brain water content following CA.
Methods: Fourteen rats were subjected to normothermic (37.5 degrees C) or hypothermic (34 degrees C) CA induced by 8 min of asphyxiation. Animals were resuscitated with ventilation, cardiopulmonary resuscitation (CPR), and epinephrine (adrenaline). Hypothermia was induced before CA. NIRS was applied to the animal head to measure T-Hb with a wavelength of 808 nm (n = 10) and oxygenated/deoxygenated Hb, Cyto-C, and brain water content with wavelengths of 620-1120 nm (n = 4).
Results: There were no technical difficulties in applying NIRS to the animal, and the signals were strong and consistent. Normothermic CA caused post-resuscitation hyperemia followed by hypoperfusion determined by the level of T-Hb. Hypothermic CA blunted post-resuscitation hyperemia and resulted in more prominent post-resuscitation hypoperfusion. Both, normothermic and hypothermic CA resulted in a sharp decrease in oxygenated Hb and Cyto-C, and the level of oxygenated Hb was higher in hypothermic CA after resuscitation. There was a rapid increase in brain water signals following CA. Hypothermic CA attenuated increased water signals in normothermic CA following resuscitation.
Conclusion: NIRS can be applied to monitor cerebral blood volume, oxygenation state of Hb, Cyto-C, and water content following CA in rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.resuscitation.2004.05.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!