The syntheses, structural features, electrochemical behavior, absorption spectra, and photophysical properties of five mononuclear complexes [(terpy)Ru(terpy-DEDBT(n)-terpy)](2+), RuT(n), and five binuclear complexes [(terpy)Ru(terpy-DEDBT(n)-terpy)Ru(terpy)](4+), RuT(n)Ru, are reported, where n varies from 1 to 5 so that the metal-metal distance is estimated to be 42 A for the largest binuclear complex, RuT(5)Ru (terpy is 2,2':6',2"-terpyridine and DEDBT is 2,5-diethynyl-3,4-dibutylthiophene). The metal-centered oxidation potentials for the mononuclear and binuclear species are slightly more positive than for the reference [Ru(terpy)(2)](2+) complex, owing to the withdrawing nature of the back-to-back terpyridine ligands incorporating the repeat diethynyl-thiophene units. Comparison of the reduction potentials for the mononuclear and binuclear complexes reveals that the reduction steps are localized either at the terpy fragments of the T(n) ligands or at the terpy peripheral ligands. The spectroscopic results (absorption spectra at room temperature, luminescence spectra and lifetimes at room temperature and at 77 K) in acetonitrile solvent are consistent with the establishment of electronic delocalization within the oligomeric diethynyl-thiophene fragments (DEDBT(n)) of the T(n) ligands; however, the results also indicate that the terpy units of these ligands and the DEDBT(n)fragments are not strongly coupled. Both at room temperature and at 77 K, the (3)metal-to-ligand charge-transfer luminescence of RuT(n) and RuT(n)Ru complexes is strongly depressed in the larger species with respect to what happens for n < or = 2 (where the luminescence quantum yield is phi approximately 10(-4)); this is discussed in terms of the possible intervention of triplet levels localized at the oligothiophene DEDBT(n)(fragments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic0493043DOI Listing

Publication Analysis

Top Keywords

mononuclear binuclear
12
room temperature
12
back-to-back terpyridine
8
terpyridine ligands
8
photophysical properties
8
absorption spectra
8
binuclear complexes
8
potentials mononuclear
8
ligands
6
complexes
5

Similar Publications

Insulin-like growth factor 2 (IGF2) is essential for cell growth and differentiation and functions through the IGF2 receptor (IGF2R) to regulate embryonic and placental development. Exosomes that are synthesized and released from cells and play important roles in embryogenesis and placental development rely on the IGF2R for sorting and transport. However, the role of the imprinted Igf2-Igr2r axis and exosomes in the co-regulation of early placental development remains unknown.

View Article and Find Full Text PDF

Hydrazone copper(II) complexes suppressed lung adenocarcinoma by activating multiple anticancer pathway.

Bioorg Chem

January 2025

The Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China; Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin, Guangxi, China. Electronic address:

Article Synopsis
  • Researchers created four new copper(II) hydrazone complexes to assess their potential in treating lung cancer.
  • The MTT assays indicated that these complexes, especially complex 3, were more effective against cancer cells than the common drug cisplatin, showing selective toxicity towards A549 lung cancer cells.
  • Complex 3 not only demonstrated low toxicity in normal cells but also effectively killed tumor cells through multiple anticancer pathways, including a process called cuproptosis, confirming its potential for lung cancer treatment in experiments with mice.
View Article and Find Full Text PDF

Thioarsenate sorbs to natural organic matter through ferric iron-bridged ternary complexation to a lower extent than arsenite.

J Hazard Mater

November 2024

Environmental Geochemistry Laboratory, Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri 462066, Madhya Pradesh, India; Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany. Electronic address:

Understanding processes regulating thioarsenate (HAsSO; n = 1 - 3; x = 1 - 3) mobility is essential to predicting the fate of arsenic (As) in aquatic environments under anoxic conditions. Under such conditions, natural organic matter (NOM) is known to effectively sorb arsenite and arsenate due to metal cation-bridged ternary complexation with the NOM. However, the extent and mechanism of thioarsenate sorption onto NOM via similar complexation has not been investigated.

View Article and Find Full Text PDF

This work presents the synthesis of five new functionalized (benz)imidazolium -heterocyclic (NHC) ligands () and four new (benz)imidazole silver(I) NHC (Ag(I)-NHC) complexes of mononuclear or binuclear type. The complexes have been fully characterized, including single crystal X-ray diffraction of three new structures. The complexes and their corresponding free NHC ligands have been screened against breast cancer and noncancerous cell lines, showing the mononuclear benzimidazole complex has the highest activity, while the binuclear benzimidazole complex has the highest cancer cell selectivity.

View Article and Find Full Text PDF

A series of N,O donor-based mono- and binuclear four-coordinated boron complexes were synthesized. Depending on the substitution and spacer, these complexes exhibit intense blue, green and yellow emission in solution states. Notably, the fluorescence quantum yields (Φ) and fluorescence decay (lifetime, τ) of mononuclear boron complexes (2 a-2 e) were higher than the binuclear boron complexes (2 f-2 k).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!