The reaction of Fe(III) with Na(+) and K(+) salts of the trivacant [alpha-SiW(9)O(34)](10)(-) ligand have been investigated at pH 6 and pH 1. A new dimer, [(alpha-SiFe(3)W(9)(OH)(3)O(34))(2)(OH)(3)](11-) (1), is synthesized by reacting Na(7)H(3)[alpha-SiW(9)O(34)] or K(10)[alpha-SiW(9)O(34)] with exactly 3 equiv of Fe(III) in a 0.5 M sodium acetate solution (pH 6). The structure of 1, determined by single-crystal X-ray diffraction (a = 22.454(2) A, b = 12.387(2) A, c = 37.421(2), beta = 100.107(8) degrees , monoclinic, C2/c, Z = 4, R(1) = 5.11% based on 12739 independent reflections), consists of two [alpha-SiFe(3)W(9)(OH)(3)O(34)](4-) units linked by three Fe-mu-OH-Fe bonds. Reaction of K(10)[alpha-SiW(9)O(34)] with 3 equiv of Fe(III) in water (pH 1) yields [(alpha-Si(FeOH(2))(2)FeW(9)(OH)(3)O(34))(2)](8)(-2). The structure of 2 was also determined by single-crystal X-ray diffraction (a = 36.903(2) A, b = 13.9868(9) A, c = 21.7839(13) A, beta = 122.709(1) degrees , monoclinic, C2/c, Z = 4, R(1) = 4.57% based on 11787 independent reflections). It consists of two [alpha-Si(FeOH(2))(2)FeW(9)(OH)(3)O(34)](4-) Keggin units linked by a single edge. The terminal ligand on Fe1 in each trisubstituted Keggin unit becomes a mu(2) oxo ligand bridging to a [WO(6)](2-) moiety. The UV-vis spectra of both complexes show the characteristic oxygen-to-metal-charge-transfer bands of polyoxometalates as well as an Fe(III)-centered band at 436 nm (epsilon = 146 M(-1) cm(-1)) and 456 nm (epsilon = 104 M(-1) cm(-1)) for complexes 1 and 2, respectively. Differential scanning calorimetry data show that complex 1 decomposes between 575 and 600 degrees C whereas no decomposition is observed for complex 2 up to temperatures of 600 degrees C.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic049517sDOI Listing

Publication Analysis

Top Keywords

equiv feiii
8
structure determined
8
determined single-crystal
8
single-crystal x-ray
8
x-ray diffraction
8
degrees monoclinic
8
monoclinic c2/c
8
independent reflections
8
reflections consists
8
units linked
8

Similar Publications

Zn(II)-Responsive MRI Probe Based on an Fe(III) Macrocyclic Complex.

Inorg Chem

December 2024

Department of Chemistry, University at Buffalo, The State University of New York, AmherstNew York14260, United States.

The development of responsive MRI contrast agents to detect fluctuations in Zn(II) is a growing area of research. Here we describe a high-spin Fe(III) coordination complex, Fe(ADAPT), as one of the first examples of an Fe(III) MRI probe that is responsive to Zn(II). The six-coordinate Fe(ADAPT) contains a phenolate-appended 1,4,7-triazacyclononane (TACN) ligand framework, with the phenolate groups linked to a Zn(II) binding moiety.

View Article and Find Full Text PDF

NNN-Bis(imino) pyridine-based pincer-Fe(II) complexes with an expected trigonal bipyramidal (TBP) geometry equilibrated to a rearranged ion pair of an octahedral dicationic Fe complex containing two bis(imino)pyridine ligands that are neutralized by a tetrahedral dianionic-[FeCl]. Single-crystal X-ray diffraction (SCXRD), high-resolution mass spectrometry (HRMS), and UV-visible (UV-vis) studies suggested that the equilibrium was dictated by the sterics of the R group on the imine N, with the less-crowded groups tilting the equilibrium to the ion pair and the bulky ones favoring the TBP geometry. Electron paramagnetic resonance (EPR) and Evan's magnetic moment measurements indicated that the complexes were paramagnetic with Fe(II) in a high-spin state.

View Article and Find Full Text PDF

Ethylene-forming enzyme (EFE) is an iron(II)-dependent dioxygenase that fragments 2-oxoglutarate (2OG) to ethylene (from C3 and C4) and 3 equivs of carbon dioxide (from C1, C2, and C5). This major ethylene-forming pathway requires l-arginine as the effector and competes with a minor pathway that merely decarboxylates 2OG to succinate as it oxidatively fragments l-arginine. We previously proposed that ethylene forms in a polar-concerted (Grob-like) fragmentation of a (2-carboxyethyl)carbonatoiron(II) intermediate, formed by the coupling of a C3-C5-derived propion-3-yl radical to a C1-derived carbonate coordinated to the Fe(III) cofactor.

View Article and Find Full Text PDF

Titanocene dichloride (TDC) is an anticancer agent that delivers Ti(IV) into each of the two Fe(III) binding sites of bilobal human serum transferrin (Tf). This protein has been implicated in the selective transport of Ti(IV) to cells. How Ti(IV) might be released from the Tf Fe(III) binding site has remained a question, and crystal structures have raised issues about lobe occupancy and lobe closure in Ti(IV)-loaded Tf, compared with the Fe(III)-loaded form.

View Article and Find Full Text PDF

Halogenated Metal-Binding Compounds from Shipworm Symbionts.

J Nat Prod

March 2022

Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States.

Bacteria use small molecules to impose strict regulation over the acquisition, uptake, and sequestration of transition metal ions. Low-abundance nutrient metals, such as Fe(III), need to be scavenged from the environment by high-affinity chelating molecules called siderophores. Conversely, metal ions that become toxic at high concentrations need to be sequestered and detoxified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!