AI Article Synopsis

Article Abstract

In vivo reflectance confocal microscopy is a novel technique for the noninvasive study and diagnosis of the skin. The aim of this study was to describe and characterize the cytological and architectural aspects of cell clusters in melanocytic lesions observed by confocal microscopy, and to correlate them with routine histopathology. A total of 55 melanocytic lesions comprising 20 melanomas, 25 acquired nevi and 10 Spitz nevi were studied by means of reflectance confocal microscopy, dermoscopy and routine histopathology. Three different types of cell clusters at confocal microscopy observation (dense, sparse cell and cerebriform clusters) were identified and correlated with histopathology. Dense clusters appeared characteristic for benign lesions, although present in 13 out of 20 melanomas. Sparse cell clusters were more frequently observable in melanomas, but also sporadically present in one Spitz nevus. Moreover, cerebriform clusters were exclusively observed in five out of 20 melanomas. Confocal microscopy allowed the in vivo characterization of aspects of melanocytic nests and their exact correlation with histopathology.

Download full-text PDF

Source
http://dx.doi.org/10.1038/modpathol.3800330DOI Listing

Publication Analysis

Top Keywords

confocal microscopy
24
reflectance confocal
12
cell clusters
12
melanocytic nests
8
melanocytic lesions
8
routine histopathology
8
sparse cell
8
cerebriform clusters
8
confocal
6
microscopy
6

Similar Publications

Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, -alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase.

View Article and Find Full Text PDF

Perfluorinated compounds (PFAS) are well recognized toxic pollutants for humans, but if their effect is equally harmful for healthy and fragile people is unknown. Addressing this question represents a need for ensuring global health and wellbeing to all individuals in a world facing the progressive increase of aging and aging related diseases. This study aimed to evaluate the impact of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA) exposure on development and skeletal phenotype using the osteogenesis imperfecta (OI) zebrafish model Chihuahua (Chi/+), carrying a dominant glycine substitution in the α1 chain of collagen I and their wild-type (WT) littermates.

View Article and Find Full Text PDF

In recent years, three-dimensional (3D) cultures of tumor cells has emerged as an important tool in cancer research. The significance of 3D cultures, such as tumor spheroids, lies in their ability to mimic the in vivo tumor microenvironment more precisely, offering a nuanced understanding of immune responses within the context of tumor progression. In fact, the infiltration of cytotoxic lymphocytes is key to determining patients' prognosis in several types of cancer and response to immunotherapy.

View Article and Find Full Text PDF

The immunomodulatory properties of hyaluronan and its derivatives are key to their use in medicine and tissue engineering. In this work we evaluated the capability of soluble tyramine-modified hyaluronan (THA) synthesized from hyaluronan of two molecular weights (low M = 280 kDa and high M = 1640 kDa) for polarization of THP-1 and peripheral blood mononuclear cells (PBMCs)-derived macrophages (MΦs). We demonstrate the polarization effects of the supplemented THA by flow cytometry and bead-based multiplex immunoassay for the THP-1 derived MΦs and by semi-automated image analysis from confocal microscopy, immunofluorescent staining utilizing CD68 and CD206 surface markers, RT-qPCR gene expression analysis, as well as using the enzyme-linked immunosorbent assay (ELISA) for PBMCs-derived MΦs.

View Article and Find Full Text PDF

Enhancement of Transdermal Drug Delivery: Integrating Microneedles with Biodegradable Microparticles.

Mol Pharm

January 2025

Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, Georgia 30341, United States.

This investigation aimed to enhance transdermal methotrexate delivery through human skin by employing Dr. Pen microneedles and poly(d,l-lactide--glycolide) acid microparticles formulated from eight polymer grades (Expansorb DLG 95-4A, DLG 75-5A, DLG 50-2A, DLG 50-5A, DLG 50-8A, DLG 50-6P, DLG 50-7P, and DLL 10-15A). A comprehensive characterization of the microparticles was performed, encompassing various parameters such as size, charge, morphology, microencapsulation efficiency, yield, release kinetics, and chemical composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!