Deregulation of catalase, not MnSOD, is associated with necrotic death of p53-defective DF-1 cells under antimycin A-induced oxidative stress.

Mol Cells

Laboratory of Cell Growth and Function Regulation, College of Life and Environmental Sciences, Korea University, Seoul 136-701, Korea.

Published: October 2004

One of distinct genetic alterations in spontaneously immortalized DF-1 cells was found to be dysfunction of p53 and E2F-1 as well as altered antioxidant gene expression (upregulation of MnSOD and downregulation of catalase). We have characterized the cellular responses of primary and immortal DF-1 cells to oxidative stress and found that DF-1 cells were more sensitive to oxidative stress than their primary counterparts when treated with antimycin A. The increased DF-1 cell death by oxidative stress was accompanied by an increase in the levels of intracellular superoxide anions and hydrogen peroxide. The cell death in DF-1 cells by antimycin A showed none of the hallmarks of apoptosis, but displayed a significantly increased necrotic cell population. Anti-apoptotic Bcl-2 failed to inhibit oxidative-induced necrotic cell death in the DF-1 cells. However, this necrotic cell death was significantly decreased by treatment with hydrogen peroxide scavengers such as sodium pyruvate and N-acetyl-cysteine. Interestingly, overexpression of human catalase in DF-1 cells endowed cells resistant to the oxidative stress by antimycin A treatment, although the downregulation of MnSOD by an antisense strategy showed no evident change in the cytotoxic effect caused by antimycin A. Taken together, the present study might provide new therapeutic approach for tumor cells having the loss of p53 function and the altered antioxidant functions.

Download full-text PDF

Source

Publication Analysis

Top Keywords

df-1 cells
28
oxidative stress
20
cell death
16
necrotic cell
12
cells
9
df-1
8
cells antimycin
8
altered antioxidant
8
hydrogen peroxide
8
death df-1
8

Similar Publications

Infectious bursal disease virus affecting interferon regulatory factor 7 signaling through VP3 protein to facilitate viral replication.

Front Cell Infect Microbiol

January 2025

Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China.

Interferon regulatory factor 7 (IRF7)-mediated type I interferon antiviral response is crucial for regulating the host following viral infection in chickens. Infectious bursal disease virus (IBDV) is a double-stranded RNA virus that induces immune suppression and high mortality rates in chickens aged 3-6 weeks. Previous studies have shown that IBDV infection antagonizes the type I interferon production to facilitate viral replication in the cell, and IRF7 signaling might play an important role.

View Article and Find Full Text PDF

Porcine deltacoronavirus (PDCoV), also known as HKU15, is a swine enteropathogenic virus that is believed to have originated in birds. PDCoV belongs to the genus Deltacoronavirus (DCoV), the members of which have mostly been identified in diverse avian species. We recently reported that chicken or porcine aminopeptidase N (APN), the major cellular receptor for PDCoV, can mediate cellular entry via three pseudotyped retroviruses displaying spike proteins from three avian DCoVs (HKU11, HKU13, and HKU17).

View Article and Find Full Text PDF

Coccidiosis, a parasitic disease caused by Eimeria protozoa that parasitizes intestinal tissues of chicken, poses a challenge to the development of the poultry industry. circRNAs are a class of circular RNA macromolecules crucial in the immune response to pathogens. Previous studies have shown that gga-miR-2954 inhibits the inflammatory response to Eimeria tenella (E.

View Article and Find Full Text PDF

Duck Tembusu virus (DTMUV), a novel positive-sense RNA virus, has caused significant economic losses in the poultry industry of Eastern and Southeast Asia since its outbreak in 2010. Furthermore, the rapid transmission and potential zoonotic nature of DTMUV pose a threat to public health safety. In this study, a 4D-DIA quantitative proteomics approach was employed to identify differentially expressed cellular proteins in DTMUV-infected DF-1 cells, which are routinely used for virus isolation and identification for DTMUV, as well as the development of vaccines against other poultry viruses.

View Article and Find Full Text PDF

The Chicken Promoter and Its Regulation by MYC and HIF1A.

Genes (Basel)

November 2024

Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.

Background: Histone deacetylase 4 () is a member of the class II histone deacetylase family, whose members play a crucial role in various biological processes. An in-depth investigation of the transcriptional characteristics of chicken can provide fundamental insights into its function.

Methods: We examined expression in chicken embryonic stem cells (ESC) and spermatogonial stem cells (SSC) and cloned a 444 bp fragment from upstream of the chicken transcription start site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!