The objective of the present study was to formulate a hydroxypropyl methylcellulose (HPMC) gel drug reservoir system with ethanol-water as a solvent system and limonene as a penetration enhancer for enhancing the transdermal delivery of nicorandil so as to develop and fabricate a membrane-moderated transdermal therapeutic system (TTS). The in vitro permeation of nicorandil was determined across rat abdominal skin from a solvent system consisting of ethanol or various proportions of ethanol and water. The ethanol-water (70:30 v/v) solvent system that provided an optimal transdermal permeation was used in formulating an HPMC gel drug reservoir system with selected concentrations (0% w/w, 4% w/w, 6% w/w, 8% w/w or 10% w/w) of limonene as a penetration enhancer for further enhancement of transdermal permeation of nicorandil. The amount of nicorandil permeated in 24 h was found increased with an increase in the concentration of limonene in the drug reservoir system up to a concentration of 6% w/w, but beyond this concentration there was no further increase in the amount of drug permeated. The flux of nicorandil was 370.9 +/- 4.2 microg/cm2 x h from the drug reservoir system with 6% w/w of limonene, which is about 2.6 times the required flux to be obtained across rat abdominal skin for producing the desired plasma concentration for the predetermined period in humans. The results of a Fourier Transform Infrared study indicated that limonene enhanced the percutaneous permeation of nicorandil by partially extracting the stratum corneum lipids. It is concluded that the HPMC gel drug reservoir system prepared with a 70:30 v/v ethanol-water solvent system containing 6% w/w of limonene is useful in designing and fabricating a membrane-moderated TTS of nicorandil.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000081117DOI Listing

Publication Analysis

Top Keywords

drug reservoir
24
reservoir system
24
solvent system
20
hpmc gel
16
gel drug
16
system
12
ethanol-water solvent
12
limonene penetration
12
penetration enhancer
12
permeation nicorandil
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!