The results of empirical studies have revealed links between phytoplankton and bacterioplankton, such as the frequent correlation between chlorophyll a and bulk bacterial abundance and production. Nevertheless, little is known about possible links at the level of specific taxonomic groups. To investigate this issue, seawater microcosm experiments were performed in the northwestern Mediterranean Sea. Turbulence was used as a noninvasive means to induce phytoplankton blooms dominated by different algae. Microcosms exposed to turbulence became dominated by diatoms, while small phytoflagellates gained importance under still conditions. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments showed that changes in phytoplankton community composition were followed by shifts in bacterioplankton community composition, both as changes in the presence or absence of distinct bacterial phylotypes and as differences in the relative abundance of ubiquitous phylotypes. Sequencing of DGGE bands showed that four Roseobacter phylotypes were present in all microcosms. The microcosms with a higher proportion of phytoflagellates were characterized by four phylotypes of the Bacteroidetes phylum: two affiliated with the family Cryomorphaceae and two with the family Flavobacteriaceae. Two other Flavobacteriaceae phylotypes were characteristic of the diatom-dominated microcosms, together with one Alphaproteobacteria phylotype (Roseobacter) and one Gammaproteobacteria phylotype (Methylophaga). Phylogenetic analyses of published Bacteroidetes 16S rRNA gene sequences confirmed that members of the Flavobacteriaceae are remarkably responsive to phytoplankton blooms, indicating these bacteria could be particularly important in the processing of organic matter during such events. Our data suggest that quantitative and qualitative differences in phytoplankton species composition may lead to pronounced differences in bacterioplankton species composition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC525254 | PMC |
http://dx.doi.org/10.1128/AEM.70.11.6753-6766.2004 | DOI Listing |
Sci Rep
January 2025
Department of Landscape Architecture, Poznań University of Life Sciences, 159 Dąbrowskiego Street, Poznań, 60-594, Poland.
As a result of human activities, surface waters worldwide are experiencing increasing levels of eutrophication, leading to more frequent occurrences of microalgae, including harmful algal blooms. We aimed to investigate the impact of decomposing camelina straw on mixed phytoplankton communities from eutrophic water bodies, comparing it to the effects of barley straw. The research was carried out in 15 aquaria (five of each type - containing no straw, camelina straw, and barley straw).
View Article and Find Full Text PDFJ Aquat Anim Health
December 2024
Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, USA.
Objective: The dinoflagellate Alexandrium monilatum forms blooms during summer in tributaries of the lower Chesapeake Bay. Questions persist about the potential for A. monilatum to negatively affect aquatic organisms.
View Article and Find Full Text PDFNew Phytol
December 2024
Department of Ecology, Evolution and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
Gephyrocapsa huxleyi is a prevalent, bloom-forming phytoplankton species in the oceans. It exhibits a complex haplodiplontic life cycle, featuring a diploid-calcified phase, a haploid phase and a third 'decoupled' phase produced during viral infection. Decoupled cells display a haploid-like phenotype, but are diploid.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Chemistry and Biochemistry, Geotop Research Center, Concordia University, Montréal, QC, Canada.
The priming effect (PE) refers to the enhanced remineralization of recalcitrant organic carbon (OC) driven by the respiration of labile OC, potentially increasing CO fluxes from aquatic ecosystems. Patterns of PE induced by marine and terrestrial OC inputs can be explored through sedimentary contributions to the degraded OC pool. In this study, coastal sediments (δC = -25.
View Article and Find Full Text PDFMar Environ Res
December 2024
State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
Dissolved organic nitrogen (DON) has recently been recognized as an important nitrogen source for marine phytoplankton. However, the composition, sources, and biogeochemical cycling of DON in coastal ecosystems remain poorly understood. This study investigates the spatial distribution and seasonal variability of DON in Daya Bay, a subtropical semi-enclosed bay in the northern South China Sea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!