AI Article Synopsis

  • A recombinant D92G mutant sialidase from Micromonospora viridifaciens was successfully cloned, expressed, and purified.
  • Kinetic studies indicate that replacing the conserved aspartic acid with glycine results in a functional sialidase with notable activity against specific substrates, showing a significant free energy contribution to its hydrolysis process.
  • Structural analysis reveals that the D92G mutation doesn't noticeably alter the active site arrangement, with a water molecule taking the place of the removed aspartic acid.

Article Abstract

A recombinant D92G mutant sialidase from Micromonospora viridifaciens has been cloned, expressed and purified. Kinetic studies reveal that the replacement of the conserved aspartic acid with glycine results in a catalytically competent retaining sialidase that possesses significant activity against activated substrates. The contribution of this aspartate residue to the free energy of hydrolysis for natural substrates is greater than 19 kJ/mol. The three dimensional structure of the D92G mutant shows that the removal of aspartic acid 92 causes no significant re-arrangement of the active site, and that an ordered water molecule substitutes for the carboxylate group of D92.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2004.10.016DOI Listing

Publication Analysis

Top Keywords

aspartic acid
12
active site
8
micromonospora viridifaciens
8
d92g mutant
8
contribution active
4
site aspartic
4
acid catalysis
4
catalysis bacterial
4
bacterial neuraminidase
4
neuraminidase micromonospora
4

Similar Publications

Lung cancer is one of the major causes of cancer morbidity and mortality. Subtyping of non-small cell lung cancer is necessary owing to different treatment options. This study is to evaluate the value of immunohistochemical expression of glypican-1 in the diagnosis of lung squamous cell carcinoma (SCC).

View Article and Find Full Text PDF

Purpose: Sarcopenia is an age-related disease that is related to nutritional intake and chronic low-grade inflammation. The aim of this study was to investigate the association of dietary intake, inflammatory markers and sarcopenia among the community-dwelling older adults.

Methods: A total of 1001 older adults aged 60 and above were recruited.

View Article and Find Full Text PDF

Maternal amino acid intake and its biological value may influence glucose regulation and insulin sensitivity, impacting the risk of developing gestational diabetes mellitus (GDM). This study aimed to evaluate the association between amino acid intake from maternal diet before and during pregnancy and the risk of GDM. This study is part of the ongoing BORN2020 epidemiological Greek cohort.

View Article and Find Full Text PDF

The effects of frying times (1, 2, 3, and 4 min) and temperatures (140, 160, 180, and 200 °C) were investigated on the nutritional components, color, texture, and volatile compounds of three varieties (808, 0912, and LM) from Guizhou, China. Increased frying time and temperature significantly reduced the moisture, polysaccharide, and protein contents, while increasing hardness and chewiness, and decreasing elasticity and extrusion resilience, negatively impacting overall quality. Optimal umami and sweet amino acid retention were achieved by frying at 160 °C frying for 1-3 min or 140-180 °C for 2 min.

View Article and Find Full Text PDF

Tissue engineering and regenerative medicine have made significant breakthroughs in creating complex three-dimensional (3D) constructs that mimic human tissues. This progress is largely driven by the development of hydrogels, which enable the precise arrangement of biomaterials and cells to form structures resembling native tissues. Gelatin-based bioinks are widely used in wound healing due to their excellent biocompatibility, biodegradability, non-toxicity, and ability to accelerate extracellular matrix formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!