We have recently cloned the full-length cDNAs of the two growth hormone secretagogue receptor (GHSR) subtypes from a teleost species, the black seabream (Acanthopagrus schlegeli) [Mol. Cell. Endocrinol. 214 (2004) 81], namely sbGHSR-1a and sbGHSR-1b. Functional expression of these two receptor constructs in human embryonic kidney 293 (HEK293) cells indicated that stimulation of sbGHSR-1a by growth hormone secretagogues (GHS) could evoke increases in intracellular Ca2+ concentration ([Ca2+]i), whereas sbGHSR-1b appeared to play an inhibitory role on the signal transduction activity of sbGHSR-1a. In the present study, we have further investigated the signal transduction mechanism of sbGHSR-1a. The peptide GHS GHRP-6 and the non-peptide GHS L163,540 were able to trigger a receptor specific and phospholipase C (PLC)-dependent elevation of [Ca2+]i in HEK293 cells stably expressing sbGHSR-1a. This GHS-induced calcium mobilization was also dependent on protein kinase C activated L-type calcium channel opening. It was found that sbGHSR-1a could function in an agonist-independent manner as it exhibited a high basal activity of inositol phosphate production in the absence of GHS, indicating that the fish receptor is constitutively active. In addition, the extracellular signal-regulated kinases 1 and 2 (ERK1/2) were found to be activated upon stimulation of sbGHSR-1a by GHRP-6. This observation provides direct evidence in the coupling of sbGHSR-1a to ERK1/2 activation. Neither Gs nor Gi proteins are coupled to the receptor, as GHS did not induce cAMP production nor inhibit forskolin-stimulated cAMP accumulation in the sbGHSR-1a bearing cells. Furthermore, the ability of the GHSR antagonist D-Lys3-GHRP-6 to inhibit basal PLC and basal ERK1/2 activity suggests that this compound is an inverse agonist. In summary, the sbGHSR-1a appears to couple through the G(q/11)-mediated pathway to activate PLC, resulting in increased IP3 production and Ca2+ mobilization from both intracellular and extracellular stores. Moreover, sbGHSR-1a may trigger multiple signal transduction cascades to exert its physiological functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2004.08.088 | DOI Listing |
Cardiovasc Diabetol
December 2024
Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA.
Background: Long-term consumption of Western Diet (WD) is a well-established risk factor for the development of cardiovascular disease (CVD); however, there is a paucity of studies on the long-term effects of WD on the pathophysiology of CVD and sex-specific responses.
Methods: Our study aimed to investigate the sex-specific pathophysiological changes in left ventricular (LV) function using transthoracic echocardiography (ECHO) and LV tissue transcriptomics in WD-fed C57BL/6 J mice for 125 days, starting at the age of 300 through 425 days.
Results: In female mice, consumption of the WD diet showed long-term effects on LV structure and possible development of HFpEF-like phenotype with compensatory cardiac structural changes later in life.
Biochem Pharmacol
December 2024
Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan; Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan; Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu 30205, Taiwan. Electronic address:
Chondrosarcoma is a type of bone cancer that originates from cartilage cells. In clinical practice, surgical resection is the primary treatment for chondrosarcoma, but chemotherapy becomes essential for patients with metastasis or tumors in surgically inaccessible sites. However, drug resistance often leads to treatment failure.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
December 2024
Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India. Electronic address:
Peptidyl prolyl cis/trans isomerases (PPIases), a ubiquitously distributed superfamily of enzymes, associated with signal transduction, trafficking, assembly, biofilm formation, stress tolerance, cell cycle regulation, gene expression and tissue regeneration, is a key regulator of metabolic disorders and microbial virulence. This review assumes an integrative approach, to provide a holistic overview of the structural and functional diversity of PPIases, examining their conformational dynamics, cellular distribution, and physiological significance. We explore their intricate involvement in cellular processes and virulence modulation in both eukaryotic and prokaryotic systems.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center; Memphis, 38163. Electronic address:
Familial Alzheimer's disease (FAD) is frequently associated with mutations in the amyloid precursor protein (APP), which are thought to lead to cognitive deficits by impairing NMDA receptor (NMDAR)-dependent forms of synaptic plasticity. Given the reliance of synaptic plasticity on NMDAR-mediated Ca entry, shaping of NMDAR activity by APP and/or its disease-causing variants could provide a basis for understanding synaptic plasticity impairments associated with FAD. A region of APP (residues 639-644 within APP695) processed by the γ-secretase complex, which generates amyloid β (Aβ) peptides, is a hotspot for FAD mutations.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China. Electronic address:
Biodegradable plastics, regarded as an ideal substitute for traditional plastics, are increasingly utilized across various industries. However, due to their unique degradation properties, they can generate microplastics (MPs) at a faster rate, potentially posing a threat to plant development. This study employed transcriptomics and metabolomics to investigate the effects of polylactic acid microplastics (PLA-MPs) on the physiological and biochemical characteristics of Brassica chinensis L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!