Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
During colonization of the Euprymna scolopes light organ, symbiotic Vibrio fischeri cells aggregate in mucus secreted by a superficial ciliated host epithelium near the sites of eventual inoculation. Once aggregated, symbiont cells migrate through ducts into epithelium-lined crypts, where they form a persistent association with the host. In this study, we provide evidence that nitric oxide synthase (NOS) and its product nitric oxide (NO) are active during the colonization of host tissues by V. fischeri. NADPH-diaphorase staining and immunocytochemistry detected NOS, and the fluorochrome diaminofluorescein (DAF) detected its product NO in high concentrations in the epithelia of the superficial ciliated fields, ducts, and crypt antechambers. In addition, both NOS and NO were detected in vesicles within the secreted mucus where the symbionts aggregate. In the presence of NO scavengers, cells of a non-symbiotic Vibrio species formed unusually large aggregates outside of the light organ, but these bacteria did not colonize host tissues. In contrast, V. fischeri effectively colonized the crypts and irreversibly attenuated the NOS and NO signals in the ducts and crypt antechambers. These data provide evidence that NO production, a defense response of animal cells to bacterial pathogens, plays a role in the interactions between a host and its beneficial bacterial partner during the initiation of symbiotic colonization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1462-5822.2004.00429.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!