Echinococcus granulosus is the causative agent of hydatidosis, a major zoonoses that affects humans and herbivorous domestic animals. The disease is caused by the pressure exerted on viscera by hydatid cysts that are formed upon ingestion of E. granulosus eggs excreted by canine. Protoscoleces, larval forms infective to canine, develop asynchronously and clonally from the germinal layer (GL) of hydatid cysts. In this report, we describe the cellular organization and the appearance of differentiated structures both in nascent buds and developed protoscoleces attached to the GL. Early protoscolex morphogenesis is a highly complex and dynamic process starting from the constitution of a foramen in the early bud, around which nuclei are distributed mainly at the lateral and apical regions. Similarly, distribution of nuclei in mature protoscoleces is not homogenous but underlies three cellular territories: the suckers, the rostellar pad, and the body, that surrounds the foramen. Several nuclei are associated to calcareous corpuscles (Cc), differentiated structures that are absent in the earlier bud stages. The number of nuclei is similar from the grown, elongated bud stage to the mature protoscolex attached to the GL, strongly suggesting that there is no significant cellular proliferation during final protoscolex development. The amount of DNA per nucleus is in the same range to the one described for most other platyhelminthes. Our results point to a sequential series of events involving cell proliferation, spatial cell organization, and differentiation, starting in early buds at the GL of fertile hydatid cysts leading to mature protoscoleces infective to canine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.20294 | DOI Listing |
BMC Geriatr
January 2025
Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Objectives: Freezing of Gait (FOG) is one of the disabling symptoms in patients with Parkinson's Disease (PD). While it is difficult to early detect because of the sporadic occurrence of initial freezing events. Whether the characteristic of gait impairments in PD patients with FOG during the 'interictal' period is different from that in non-FOG patients is still unclear.
View Article and Find Full Text PDFJ Membr Biol
January 2025
Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India.
Inward rectifying potassium (Kir) channels play a critical role in maintaining the resting membrane potential and cellular homeostasis. The high-resolution crystal structure of homotetrameric KirBac1.1 in detergent micelles provides a snapshot of the closed state.
View Article and Find Full Text PDFEye (Lond)
January 2025
Department of Surgical Sciences, University of Turin, Turin, Italy.
Purpose: This study aims to develop a deep-learning-based software capable of detecting and differentiating microaneurysms (MAs) as hyporeflective or hyperreflective on structural optical coherence tomography (OCT) images in patients with non-proliferative diabetic retinopathy (NPDR).
Methods: A retrospective cohort of 249 patients (498 eyes) diagnosed with NPDR was analysed. Structural OCT scans were obtained using the Heidelberg Spectralis HRA + OCT device.
Nat Commun
January 2025
NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
Mutations in RAS and PI3Kα are major drivers of human cancer. Their interaction plays a crucial role in activating PI3Kα and amplifying the PI3K-AKT-mTOR pathway. Disrupting RAS-PI3Kα interaction enhances survival in lung and skin cancer models and reduces tumor growth and angiogenesis, although the structural details of this interaction remain unclear.
View Article and Find Full Text PDFBMJ Open
January 2025
Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Introduction: Cardiovascular diseases (CVDs) present differently in women and men, influenced by host-microbiome interactions. The roles of sex hormones in CVD outcomes and gut microbiome in modifying these effects are poorly understood. The XCVD study examines gut microbiome mediation of sex hormone effects on CVD risk markers by observing transgender participants undergoing gender-affirming hormone therapy (GAHT), with findings expected to extrapolate to cisgender populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!