A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Involvement of AP-2 binding sites in regulation of human beta-glucuronidase. | LitMetric

Involvement of AP-2 binding sites in regulation of human beta-glucuronidase.

Naunyn Schmiedebergs Arch Pharmacol

Department of Pharmacology and Peter Holtz Research Center of Pharmacology and Experimental Therapeutics, Ernst Moritz Arndt-University, Friedrich-Loeffler-Strasse 23d, 17487 Greifswald, Germany.

Published: November 2004

The lysosomal hydrolase beta-glucuronidase (beta-gluc) can be used for the bioactivation of non-toxic glucuronide prodrugs of anticancer agents. The enzyme is present at high levels in many tumours and hence may lead to an enhanced drug targeting by tumour-selective release of the active anticancer drug. Individual expression and regulation of this enzyme is one factor modulating the bioactivation of glucuronide prodrugs. Nevertheless, in contrast to murine beta-gluc, which is inducible by androgens, the human enzyme has been regarded as an unregulated housekeeping gene due to a lacking TATA box and high G+C contents within the putative promotor sequence. Despite these facts, we were able to demonstrate downregulation of human beta-gluc expression by the calcium ionophore A23187 and the calcium ATPase inhibitor thapsigargin in the human hepatoma cell line HepG2. However, cis-acting elements responsible for this regulation have not yet been identified. We therefore characterised the 5'-untranslated region of the human beta-gluc gene using transient transfection assays with promotor-luciferase constructs in HepG2 cells and cloned fragments between 3,770 bp and 107 bp. A23187 reduced the beta-gluc promotor activity. This effect disappeared using fragments smaller than 356 bp. Using site-directed in vitro mutagenesis and gel-electrophoretic-mobility shift assays, we found evidence of an involvement of transcription factor activating protein-2 (AP-2) binding sites on the regulation of human beta-glucuronidase by A23187. Our studies provide a basis for the understanding of the transcriptional regulation of the human beta-glucuronidase gene and could be useful for the optimisation of glucuronide prodrug therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-004-0989-3DOI Listing

Publication Analysis

Top Keywords

regulation human
12
human beta-glucuronidase
12
ap-2 binding
8
binding sites
8
sites regulation
8
glucuronide prodrugs
8
human beta-gluc
8
human
7
regulation
5
beta-gluc
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!