Background: The loss of half the U.S. supply of influenza vaccine due to contamination has created a critical shortage. Dose-sparing strategies that use intradermal delivery of vaccines may be one approach to consider.
Methods: We conducted a randomized, open-label trial outside the influenza season in 100 healthy adults 18 to 40 years of age to compare the immunogenicity and safety of intradermal immunization with influenza vaccine with standard intramuscular immunization. Subjects were randomly assigned to receive either a single intramuscular dose of 0.5 ml of trivalent influenza vaccine, containing at least 15 microg of hemagglutinin per strain, by means of a prefilled syringe or a single intradermal dose of 0.1 ml, containing at least 3 microg of hemagglutinin per strain, by means of a fine-gauge needle; both injections were in the deltoid region. Changes in the hemagglutination-inhibition (HAI) antibody titer were assessed by comparing geometric mean titers and fold increases relative to baseline values and by comparing changes in the seroconversion and seroprotection rates. Local and systemic adverse events were assessed after both types of vaccination.
Results: Subjects who received an intradermal injection with one fifth the standard dose of influenza vaccine had increases in the geometric mean HAI titer by a factor of 15.2 for the H1N1 strain in the vaccine, 19.0 for the H3N2 strain, and 12.4 for the B strain on day 21, as compared with respective increases by a factor of 14.9, 7.1, and 15.3 for the intramuscular injection of the standard dose. Seroconversion and seroprotection rates were similar in the two groups on day 21, ranging from 66 to 82 percent and 84 to 100 percent, respectively. Local reactions were significantly more frequent among recipients of intradermal injections than among recipients of intramuscular injections, but such reactions were mild and transient.
Conclusions: In this study of young adults, intradermal administration of one fifth the standard intramuscular dose of an influenza vaccine elicited immunogenicity that was similar to or better than that elicited by intramuscular injection. Intradermal administration could be used to expand the supplies of influenza vaccine, but further studies are needed before this strategy can be recommended for routine use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1056/NEJMoa043540 | DOI Listing |
Open Forum Infect Dis
January 2025
Harvard Medical School, Boston, Massachusetts, USA.
Background: Infections by and influenza viruses are vaccine-preventable diseases causing great morbidity and mortality. We evaluated pneumococcal and influenza vaccination practices during pre-international travel health consultations.
Methods: We evaluated data on pretravel visits over a 10-year period (1 July 2012 through 31 June 2022) from 31 sites in Global TravEpiNet (GTEN), a consortium of US healthcare facilities providing pretravel health consultations.
Nat Microbiol
January 2025
State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Generating effective live vaccines from intact viruses remains challenging owing to considerations of safety and immunogenicity. Approaches that can be applied in a systematic manner are needed. Here we created a library of live attenuated influenza vaccines by using diverse cellular E3 ubiquitin ligases to generate proteolysis-targeting (PROTAR) influenza A viruses.
View Article and Find Full Text PDFNat Chem Biol
January 2025
State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Manipulating viral protein stability using the cellular ubiquitin-proteasome system (UPS) represents a promising approach for developing live-attenuated vaccines. The first-generation proteolysis-targeting (PROTAR) vaccine had limitations, as it incorporates proteasome-targeting degrons (PTDs) at only the terminal ends of viral proteins, potentially restricting its broad application. Here we developed the next-generation PROTAR vaccine approach, referred to as PROTAR 2.
View Article and Find Full Text PDFACS Nano
January 2025
Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.
Multiple sclerosis (MS) is a severe autoimmune disorder that wreaks havoc on the central nervous system, leading to a spectrum of motor and cognitive impairments. There is no cure, and current treatment strategies rely on broad immunosuppression, leaving patients vulnerable to infections. To address this problem, our approach aims to induce antigen-specific tolerance, a much-needed shift in MS therapy.
View Article and Find Full Text PDFHealth Secur
January 2025
Robert A. Johnson, PhD, is Director, Medical Countermeasures Programs, and Gary L. Disbrow, PhD, is Director, Center for Biomedical Advanced Research and Development Authority (BARDA), Washington, DC. Terence M. Barnhart, PhD, is Senior Strategy Implementation Leader, Tunnell Government Services, Inc. (Contractor Supporting BARDA), Washington, DC.
From influenza to COVID-19, emerging infectious diseases have taken a heavy toll on lives and resources. Emerging infectious diseases represent one of the largest threats to national security. The primary mission of the Center for Biomedical Advanced Research and Development Authority (BARDA), within the US Administration for Strategic Preparedness and Response, is to support the advanced development of medical countermeasures (MCMs) for public health security threats, including select infectious diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!