Ionic mechanism for contractile response to hyposmotic challenge in canine basilar arteries.

Am J Physiol Cell Physiol

Department of Cellular and Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka City, Shizuoka 422-8526, Japan.

Published: March 2005

A hyposmotic challenge elicited contraction of isolated canine basilar arteries. The contractile response was nearly abolished by the removal of extracellular Ca(2+) and by the voltage-dependent Ca(2+) channel (VDCC) blocker nicardipine, but it was unaffected by thapsigargin, which depletes intracellular Ca(2+) stores. The contraction was also inhibited by Gd(3+) and ruthenium red, cation channel blockers, and Cl(-) channel blockers DIDS and niflumic acid. The reduction of extracellular Cl(-) concentrations enhanced the hypotonically induced contraction. Patch-clamp analysis showed that a hyposmotic challenge activated outwardly rectifying whole cell currents in isolated canine basilar artery myocytes. The reversal potential of the current was shifted toward negative potentials by reductions in intracellular Cl(-) concentration, indicating that the currents were carried by Cl(-). Moreover, the currents were abolished by 10 mM BAPTA in the pipette solution and by the removal of extracellular Ca(2+). Taken together, these results suggest that a hyposmotic challenge activates cation channels, which presumably cause Ca(2+) influx, thereby activating Ca(2+)-activated Cl(-) channels. The subsequent membrane depolarization is likely to increase Ca(2+) influx through VDCC and elicit contraction.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00367.2003DOI Listing

Publication Analysis

Top Keywords

hyposmotic challenge
16
canine basilar
12
contractile response
8
basilar arteries
8
isolated canine
8
removal extracellular
8
extracellular ca2+
8
channel blockers
8
ca2+ influx
8
ca2+
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!