gamma-secretase functions through Notch signaling to maintain skin appendages but is not required for their patterning or initial morphogenesis.

Dev Cell

Department of Molecular Biology and Pharmacology, Division of Dermatology, Washington University School of Medicine, Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, USA.

Published: November 2004

The role of Notch signaling during skin development was analyzed using Msx2-Cre to create mosaic loss-of-function alleles with precise temporal and spatial resolution. We find that gamma-secretase is not involved in skin patterning or cell fate acquisition within the hair follicle. In its absence, however, inner root sheath cells fail to maintain their fates and by the end of the first growth phase, the epidermal differentiation program is activated in outer root sheath cells. This results in complete conversion of hair follicles to epidermal cysts that bears a striking resemblance to Nevus Comedonicus. Sebaceous glands also fail to form in gamma-secretase-deficient mice. Importantly, mice with compound loss of Notch genes in their skin phenocopy loss of gamma-secretase in all three lineages, demonstrating that Notch proteolysis accounts for the major signaling function of this enzyme in this organ and that both autonomous and nonautonomous Notch-dependent signals are involved.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.devcel.2004.09.014DOI Listing

Publication Analysis

Top Keywords

notch signaling
8
root sheath
8
sheath cells
8
gamma-secretase functions
4
notch
4
functions notch
4
signaling maintain
4
skin
4
maintain skin
4
skin appendages
4

Similar Publications

Mycobacterium abscessus (Mabs), an intracellular and opportunistic pathogen, is considered the most pathogenic fast-growing mycobacterium, and causes severe pulmonary infections in patients with cystic fibrosis. While bacterial factors contributing to its pathogenicity are well studied, the host factors and responses that worsen Mabs infection are not fully understood. Here, we report that Mabs systemic infection alters Drosophila melanogaster intestinal homeostasis.

View Article and Find Full Text PDF

The duck industry is vital for supplying high-quality protein, making research into the development of duck skeletal muscle critical for improving meat and egg production. In this study, we leveraged Oxford Nanopore Technologies (ONT) sequencing to perform full-length transcriptome sequencing of myoblasts harvested from the leg muscles of duck embryos at embryonic day 13 (E13), specifically examining both the proliferative (GM) and differentiation (DM) phases. Our analysis identified a total of 5797 novel transcripts along with 2332 long non-coding RNAs (lncRNAs), revealing substantial changes in gene expression linked to muscle development.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is a chronic disorder characterized by kidney fibrosis and extracellular matrix accumulation that can lead to end-stage kidney disease. Epithelial-to-mesenchymal transition, inflammatory cytokines, the TGF-β pathway, Wnt/β-catenin signaling, the Notch pathway, and the NF-κB pathway all play crucial roles in the progression of fibrosis. Current medications, such as renin-angiotensin-aldosterone system inhibitors, try to delay disease development but do not stop or reverse fibrosis.

View Article and Find Full Text PDF

Green tea has garnered increasing attention across age groups due to its numerous health benefits, largely attributed to Epigallocatechin 3-gallate (EGCG), its key polyphenol. EGCG exhibits a wide spectrum of biological activities, including antioxidant, anti-inflammatory, antibacterial, anticancer, and neuroprotective properties, as well as benefits for cardiovascular and oral health. This review provides a comprehensive overview of recent findings on the therapeutic potential of EGCG in various human diseases.

View Article and Find Full Text PDF

TRIM59/RBPJ positive feedback circuit confers gemcitabine resistance in pancreatic cancer by activating the Notch signaling pathway.

Cell Death Dis

December 2024

Department of Hepatobiliary Pancreatic Surgery, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, P. R. China.

Pancreatic cancer (PC) is one of the most lethal malignant tumors that lacks effective treatment, and gemcitabine-based chemoresistance occurs frequently. Therefore, new therapeutic strategies for PC are urgently needed. Tripartite motif containing 59 (TRIM59) plays an important role in breast and lung cancer chemoresistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!