Glial cell line-derived neurotrophic factor (GDNF) has been shown to be involved in the maintenance of striatal dopaminergic neurons. To study whether reduced levels of endogenous GDNF affect the striatal dopaminergic transmission we estimated the basal extracellular levels of dopamine in vivo, the basal expression of FosB-related proteins in striatal brain areas as well as the effects of acute and repeated cocaine on locomotor activity and dopamine output in mice lacking one GDNF allele (heterozygous GDNF+/- mice). As expected the striatal GDNF protein content was found to be smaller in the GDNF+/- mice than in their wild-type littermates. Unexpectedly the extracellular dopamine concentration in the GDNF+/- mice in the dorsal striatum (CPu) was 2.0-fold, and in the nucleus accumbens (NAc) 1.6-fold the concentration found in the wild-type littermates. Also FosB/DeltaFosB-like immunoreactivity was found to be elevated in the CPu as well as in the core and in the shell of NAc of the GDNF+/- mice as compared with the wild-type mice. This suggests chronic postsynaptic activation of these brain areas and is in line with elevated extracellular dopamine concentrations. Cocaine's effects acutely and after repeated treatment on locomotor activity were similar in the GDNF+/- and the wild-type mice. Neither did cocaine's acute effects on dopamine output differ between the mice of the two strains. Our findings demonstrate that reduced levels of endogenous GDNF induce alterations in dorsal striatal and accumbal dopaminergic transmission, and stress the importance of endogenous GDNF in the regulation of the dopaminergic neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1460-9568.2004.03700.x | DOI Listing |
Parkinsons Dis
December 2024
School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China.
Cinnamaldehyde (CA), the primary bioactive compound in cinnamon ( Presl, Lauraceae, ), holds potential therapeutic benefits for Parkinson's disease (PD). To scrutinize the impact and mechanisms of CA on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD, male C57BL/6 mice were randomly allocated to CA (150, 300, and 600 mg/kg), model, Madopar, and control group ( = 12). The Open Field, Pole-jump, and Rotarod experiments assessed exercise capacity and anxiety levels.
View Article and Find Full Text PDFArch Toxicol
December 2024
Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
Exposure to diesel exhaust is associated with increased risk of cardiovascular and lung disease. Substituting petroleum diesel with renewable diesel can alter emission properties but the potential health effects remain unclear. This study aimed to explore toxicity and underlying mechanisms of diesel exhaust from renewable fuels.
View Article and Find Full Text PDFNat Commun
December 2024
Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
Growth differentiation factor 15, GDF15, and glucagon-like peptide-1 (GLP-1) analogues act through brainstem neurons that co-localise their receptors, GDNF-family receptor α-like (GFRAL) and GLP1R, to reduce food intake and body weight. However, their use as clinical treatments is partially hampered since both can also induce sickness-like behaviours, including aversion, that are mediated through a well-characterised pathway via the exterolateral parabrachial nucleus. Here, in mice, we describe a separate pathway downstream of GFRAL/GLP1R neurons that involves a distinct population of brain-derived neurotrophic factor (BDNF) cells in the medial nucleus of the tractus solitarius.
View Article and Find Full Text PDFBrain Behav Immun
December 2024
Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy. Electronic address:
Weight loss is a common early sign in amyotrophic lateral sclerosis (ALS) patients and negatively correlates with survival. In different cancers and metabolic disorders, high levels of serum growth differentiation factor 15 (GDF15) contribute to a decrease of food intake and body weight, acting through GDNF family receptor alpha-like (GFRAL). Here we report that GDF15 is highly expressed in the peripheral blood of ALS patients and in the hSOD1 mouse model and that GFRAL is upregulated in the brainstem of hSOD1 mice.
View Article and Find Full Text PDFElife
December 2024
Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, United States.
Two major ligand-receptor signaling axes - endothelin Edn3 and its receptor Ednrb, and glial-derived neurotrophic factor (GDNF) and its receptor Ret - are required for migration of enteric nervous system (ENS) progenitors to the hindgut. Mutations in either component cause colonic aganglionosis, also called Hirschsprung disease. Here, we have used Wnt1Cre and Pax2Cre in mice to show that these driver lines label distinct ENS lineages during progenitor migration and in their terminal hindgut fates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!