Well-defined quasiparticles in interacting metallic grains.

Phys Rev Lett

Physics Department and CeNS, LMU München, Theresienstrasse 37, 80333 Münich, Germany.

Published: October 2004

We analyze spectral functions of mesoscopic systems with large dimensionless conductance, which can be described by a universal Hamiltonian. We show that an important class of spectral functions are dominated by one single state only, which implies the existence of well-defined (i.e., infinite-lifetime) quasiparticles. Furthermore, the dominance of a single state enables us to calculate zero-temperature spectral functions with high accuracy using the density-matrix renormalization group. We illustrate the use of this method by calculating the tunneling density of states of metallic grains, of which we discuss the crossover from the few-electron to the bulk regime.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.93.186402DOI Listing

Publication Analysis

Top Keywords

spectral functions
12
metallic grains
8
single state
8
well-defined quasiparticles
4
quasiparticles interacting
4
interacting metallic
4
grains analyze
4
analyze spectral
4
functions mesoscopic
4
mesoscopic systems
4

Similar Publications

Garner, C, Nachtegall, A, Roth, E, Sterenberg, A, Kim, D, Michael, T, and Lee, S. Effects of movement sonification auditory feedback on repetitions and brain activity during the bench press. J Strength Cond Res 38(12): 2022-2028, 2024-Auditory stimulation and feedback have been found to enhance aspects of motor performance such as motor learning, sense of agency, and movement execution.

View Article and Find Full Text PDF

Introduction/objective: Several nutraceuticals, food, and cosmetic products can be developed using royal jelly. It is known for its potential health benefits, including its ability to boost the immune system and reduce inflammation. It is rich in vitamins, minerals, and antioxidants, which can improve general health.

View Article and Find Full Text PDF

Spectroscopic aspects of underwater digital holography of plankton.

Sci Rep

January 2025

Laboratory for Radiophysical and Optical Methods of Environmental Research, National Research Tomsk State University, Tomsk, Russia, 634050.

Monitoring the parameters and behavior of plankton makes it possible to assess the state of the aquatic ecosystem and detect the beginning of an environmental disaster at an early stage. In this respect, the most informative method for the in situ plankton study is underwater digital holography. This method allows obtaining information on the size, shape, and location of plankton individuals, as well as performing their classification and biotesting according to their behavioral responses using a submersible holographic camera non-invasively, in real time, and in the automatic mode.

View Article and Find Full Text PDF

This study aims to establish a rapid and non-destructive method for recognizing the origins and cultivation patterns of Astragali Radix. A hyperspectral imaging system(spectral ranges: 400-1 000 nm, 900-1 700 nm; detection time: 15 s) was used to examine the samples of Astragali Radix with different origins and cultivation patterns. The collected hyperspectral datasets were highly correlated and numerous, which required the establishment of stable and reliable dimension reduction and classification models.

View Article and Find Full Text PDF

Improved Description of Environment and Vibronic Effects with Electrostatically Embedded ML Potentials.

J Phys Chem Lett

January 2025

Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain.

Incorporation of environment and vibronic effects in simulations of optical spectra and excited state dynamics is commonly done by combining molecular dynamics with excited state calculations, which allows to estimate the spectral density describing the frequency-dependent system-bath coupling strength. The need for efficient sampling, however, usually leads to the adoption of classical force fields despite well-known inaccuracies due to the mismatch with the excited state method. Here, we present a multiscale strategy that overcomes this limitation by combining EMLE simulations based on electrostatically embedded ML potentials with the QM/MMPol polarizable embedding model to compute the excited states and spectral density of 3-methyl-indole, the chromophoric moiety of tryptophan that mediates a variety of important biological functions, in the gas phase, in water solution, and in the human serum albumin protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!